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Motivation and contribution
•GNNs struggle from problems of under-reaching, over-smoothing, and over-squashing.
•Transformers can address those issues, but have hadlimited performance to date on graphs because the ex-isting self-attention calculation uses attributed similaritybetween nodes, as opposed to structural similarity.
• Information about the graph is typically only incorpo-rated via a positional encoding.
•Nodes can have the same position while being struc-turally different (see nodes u and v).
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Structure-Aware Transformer (SAT)
•We extend self-™attention to account for local struc-tures by extracting a subgraph representation rootedat each node.
•We propose several methods for automatically gen-erating subgraph representations.
•The resulting framework can leverage any GNN to ex-tract subgraph representations and empirically out-performs the base GNN ⇒ SAT is an effortless en-hancer of any GNN.
•The representations from the structure-aware atten-tion are at least as expressive as the representationsfrom the structure extractor.
•We provide a bound on the distance between thestructure-aware representations.

A structure-aware self attention
The original self-attention calculation is:

Attn(X) := softmax(QK
T

√
dout

)V ∈n×dout,

where Q = XWQ , K = XWK and V = XWV.
We can rewrite this as a kernel smoother:

Attn(xv) = ∑︁
u∈V

κexp(xv, xu)∑
w∈V κexp(xv, xw)

f (xu), ∀v ∈ V,

where
κexp(x, x′) := exp

(
⟨WQx,WKx′⟩/

√︁
dout

)
f (x) = WVx ∈ Rdout

We define our structure-aware attention as:
SA-attn(v) := ∑︁

u∈V

κgraph(SG(v), SG(u))∑
w∈V κgraph(SG(v), SG(w))f (xu),

where
κgraph(SG(v), SG(u)) = κexp(φ(v, G), φ(u, G)),

and φ(v, G) is a structure extractor that extracts vectorrepresentations of some subgraph centered at u withnode features X, e.g. k-subtree SAT and k-subgraph SAT:
k-subtree SAT :φ(u, G) = GNN(k)

G (u)

k-subgraph SAT :φ(u, G) =
∑︁

v∈Nk(u)
GNN(k)

G (v)

An instance of a Structure-Aware Transformer: k-subgraph SAT
Input graph Structure extractor
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...
GNN

Extract k-hop subgraphs Update node representations

Feed-forward network
Multi-head self-attention

Transformer layer
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Comparison to state-of-the-art GNNs and graph Transformers

ZINC � CLUSTER � PATTERN �

# graphs 12,000 12,000 14,000Avg. # nodes 23.2 117.2 118.9Avg. # edges 49.8 4,303.9 6,098.9Metric MAE Accuracy Accuracy
GIN 0.387±0.015 64.716±1.553 85.590±0.011GAT 0.384±0.007 70.587±0.447 78.271±0.186PNA 0.188±0.004 67.077±0.977 86.567±0.075
Transformer+RWPE 0.310±0.005 29.622±0.176 86.183±0.019Graph Transformer 0.226±0.014 73.169±0.622 84.808±0.068SAN 0.139±0.006 76.691±0.650 86.581±0.037Graphormer 0.122±0.006 – –
k-subtree SAT 0.102±0.005 77.751±0.121 86.865±0.043k-subgraph SAT 0.094±0.008 77.856±0.104 86.848±0.037

OGBG-PPA � OGBG-CODE2 �

# graphs 158,100 452,741Avg. # nodes 243.4 125.2Avg. # edges 2,266.1 124.2Metric Accuracy F1 score
GCN 0.6839±0.0084 0.1507±0.0018GCN-Virtual Node 0.6857±0.0061 0.1595±0.0018GIN 0.6892±0.0100 0.1495±0.0023GIN-Virtual Node 0.7037±0.0107 0.1581±0.0026DeeperGCN 0.7712±0.0071 –ExpC 0.7976±0.0072 –
Transformer 0.6454±0.0033 0.1670±0.0015GraphTrans – 0.1830±0.0024
k-subtree SAT 0.7522±0.0056 0.1937±0.0028

SAT enhances sparse GNNs (ZINC ↓)
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• SAT uses a GNN (i.e. a “base GNN") to create structure-aware node representations in the graph Transformer.
•Empirically, SAT always improves upon the perfor-mance of the base GNN it uses.

Effect of k in SAT (ZINC ↓)
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•The effect when considering different values of k(which determines the k-hop subgraph).
• k = 0 is equivalent to a vanilla Transformer. k ≥ 1 incor-porates structures into the node embeddings.

Effect of absolute encoding (ZINC ↓)
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•Adding an absolute encoding improves performance.
•The performance gain from including an absolute en-coding is much smaller compared to the performancegain from using the structure-aware node embeddings.

Interpretability of SAT
C O Cl H N

molecule SAT attn
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•When molecules were screened for mutagenicity, SATwas better able to identify motifs that are known to bemutagenic than a vanilla Transformer with RWPE.
• SAT puts more attention weights on the known muta-genic motifs.


