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Motivation and contribution

e GNNs struggle from problems of under-reaching, over-
smoothing, and over-squashing.

e Transformers can address those issues, but have had
limited performance to date on graphs because the ex-
Isting self-attention calculation uses attributed similarity
between nodes, as opposed to structural similarity.

¢ Information about the graph is typically only incorpo-
rated via a positional encoding.

e Nodes can have the same position while being struc-
turally different (see nodes » and v).

Structure-Aware Transformer (SAT)

¢ We extend self-™attention to account for local struc-
tures by extracting a subgraph representation rooted

A structure-aware self attention

The original self-attention calculation is:
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where Q = XWQ, K =XWg and V = XWy.

Attn(X) := softmax( )V enXdout

We can rewrite this as a kernel smoother:
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We define our structure-aware attention as:
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An instance of a Structure-Aware Transformer: 4£-subgraph SAT
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Comparison to state-of-the-art GNNs and graph Transformers
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structure-aware representations.
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Interpretability of SAT
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e SAT uses a GNN (i.e. a “base GNN") to create structure-
aware node representations in the graph Transformer.

e Empirically, SAT always improves upon the perfor-
mance of the base GNN it uses.
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k-hops

e The effect when considering different values of £
(which determines the £-hop subgraph).

e - = 0 is equivalent to a vanilla Transformer. £ > 1 incor-
porates structures into the node embeddings.

D BSSE

e Adding an absolute encoding improves performance.

e The performance gain from including an absolute en-
coding is much smaller compared to the performance
gain from using the structure-aware node embeddings.

¢ When molecules were screened for mutagenicity, SAT
was better able to identify motifs that are known to be
mutagenic than a vanilla Transformer with RWPE.

e SAT puts more attention weights on the known muta-
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genic motifs.
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