

Overview

Kernel **supervised learning** for **sequence** objects $\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)) + \frac{\mu}{2} \|f\|_{\mathcal{H}}^2$

• $\mathbf{x}_1, \ldots \mathbf{x}_n \in \mathcal{X}$ are sequences (biological sequences or texts).

Goal: learning a **predictive** and **interpretable** function $f : \mathcal{X} \to \mathcal{Y}$.

From k-mers to gap-allowed k-mers modeling

Convolutional kernel networks [1] that model k-mers:

 $K_{\mathsf{CKN}}(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{|\mathbf{x}|} \sum_{j=1}^{|\mathbf{x}'|} K_0\left(\mathbf{x}[i:i+k], \mathbf{x}'[j:j+k]\right)$

- K_0 is a Gaussian kernel over **one-hot** representations of k-mers.
- A continuous relaxation of the mismatch kernel.
- $\varphi(\mathbf{x}) := \sum_{j=1}^{|\mathbf{x}|} \varphi_0(\mathbf{x}[j:j+k])$ with φ_0 the kernel mapping associated to K_0 .
- Scalable and task-adaptive with Nyström approximation. Interpretable using end-to-end training with few filters.
- Limitation: unable to capture gapped motifs.

Recurrent kernel networks that generalize k-mers with gaps:

$$\mathcal{L}_{\mathsf{RKN}}(\mathbf{x}, \mathbf{x}') = \sum_{\mathbf{i} \in \mathcal{I}(k, |\mathbf{x}|)} \sum_{\mathbf{j} \in \mathcal{I}(k, |\mathbf{x}'|)} \lambda^{\mathsf{gaps}(\mathbf{i})} \lambda^{\mathsf{gaps}(\mathbf{j})} K_0(\mathbf{x}[\mathbf{i}], \mathbf{x}')$$

- Take gapped k-mers into account. $\lambda^{gaps(i)}$ penalizes the gaps.
- $\varphi(\mathbf{x}) = \sum_{\mathbf{i} \in \mathcal{I}(k, |\mathbf{x}|)} \lambda^{\mathsf{gaps}(\mathbf{i})} \varphi_0(\mathbf{x}[\mathbf{i}]).$
- Computationally fast using dynamic programming.
- Leads to a particular RNN with a kernel interpretation.

Definition of gap-allowed k-mers

- For $1 \le k \le n \in \mathbb{N}$, we denote by $\mathcal{I}(k, n)$ the set of sequences of indices with k elements $\mathbf{i} = (i_1, \ldots, i_k)$, with $1 \le i_1 < \cdots < i_k \le n$.
- For a sequence $\mathbf{x} = x_1 \dots x_n \in \mathcal{X}$ of length n, for a sequence of indices $\mathbf{i} \in \mathcal{I}(k, n)$, we define a k-substring as:

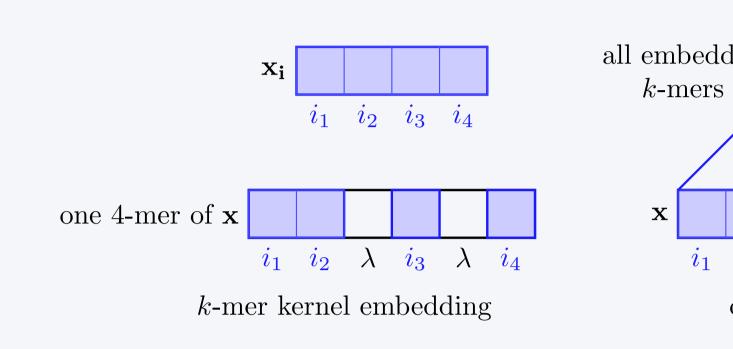
$$\mathbf{x}[\mathbf{i}] = x_{i_1} x_{i_2} \dots x_{i_k}$$

The length of the gaps in the substring is

 $gaps(\mathbf{i}) = number of gaps in the substring indices.$

• Example: $\mathbf{x} = \mathsf{BAARACADACRB}$

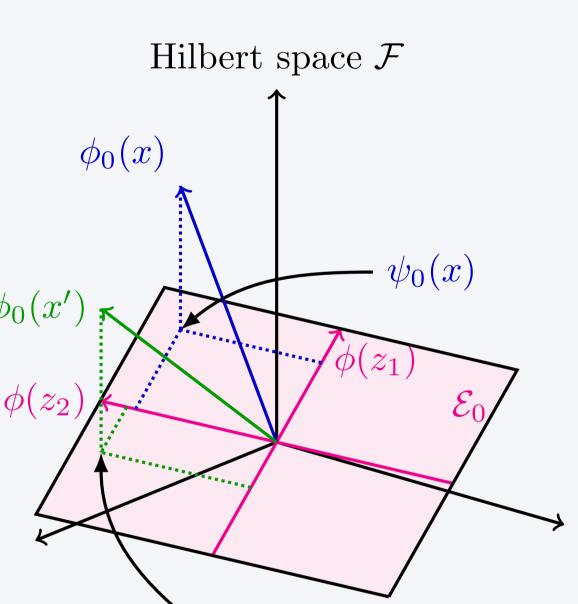
$$i = (4, 5, 8, 9, 11)$$
 $x[i] = RADAR$ gaps(i)


Recurrent Kernel Networks

Inria - firstname.lastname@inria.fr

⁺CNRS - firstname.lastname@univ-lyon1.fr

A feature map of RKN


• A feature vector of RKN for x is a mixture of Gaussians centered at $x[\mathbf{i}]$, weighted by the corresponding $\lambda^{gaps(\mathbf{i})}$. $\lambda^2 \varphi(\mathbf{x_i})$

Nyström approximation and RNNs

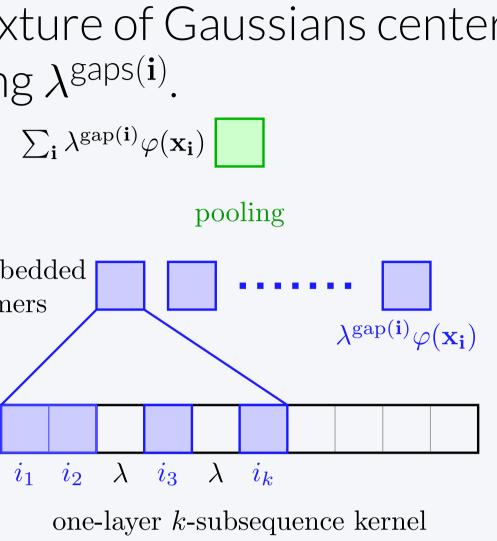
Nyström approximation:

$$\mathcal{E}_0 = \text{span}(\varphi_0(z_1), \dots, \varphi_0(z_q))$$

 $\psi_0(x) := K_{ZZ}^{-\frac{1}{2}} K_Z(x)$
where $[K_{ZZ}]_{ij} = K_0(z_i, z_j)$
and $[K_Z(x)]_i = K_0(z_i, x).$

Finite-dimensional projection of the kernel map: given a set of anchor points $Z = (z_1, \ldots, z_q)$ with $z_i \in \mathbb{R}^{k \times d}$, we project $\varphi_0(x)$ orthogonally onto \mathcal{E}_0 such that $K_0(x, x') \approx \langle \psi_0(x), \psi_0(x') \rangle_{\mathbb{R}^q}$. An approximate feature map for $K_{\rm RKN}$ is

$$\psi_k(\mathbf{x}) = \sum_{\mathbf{i}\in\mathcal{I}(k,|\mathbf{x}|)} \lambda^{\mathsf{gaps}(\mathbf{i})} \psi_0(\mathbf{x}[\mathbf{i}]) = K_{ZZ}^{-\frac{1}{2}} \sum_{\mathbf{i}\in\mathcal{I}} \mathbf{x}_{ZZ}^{-\frac{1}{2}} \sum_{\mathbf{i}\in\mathcal{I}} \mathbf{x}_{ZZ}^{-\frac{1$$


Fast computation with dynamic programming: For any $j \in \{1, ..., k\}$ and $t \in \{1, ..., |\mathbf{x}|\}$, $\psi_j(\mathbf{x}_{1:t}) = K_{Z_jZ_j}^{-\frac{1}{2}} \mathbf{h}_j[t]$ where $\mathbf{c}_{i}[t]$ and $\mathbf{h}_{i}[t]$ in \mathbb{R}^{q} obeying the recursion $\mathbf{c}_{i}[1] = \mathbf{h}_{i}[1] = 0$ $c_0[t] = 1$ $\mathbf{c}_{i}[t] = \lambda \mathbf{c}_{i}[t-1] + \mathbf{c}_{i-1}[t-1] \odot \kappa$ $\mathbf{h}_{i}[t] = \mathbf{h}_{i}[t-1] + \mathbf{c}_{i-1}[t-1] \odot \kappa(t)$

where κ is a non-linear function $\kappa(x) = e^{i t}$ \mathbb{R}^{qd} whose *i*-th row is the *j*-th row of z_i .

 $\mathbf{x}'[\mathbf{j}])$

= 3

Dexiong Chen[†] Laurent Jacob[‡] Julien Mairal[†]

 $\lambda^{\operatorname{gaps}(\mathbf{i})} K_Z(\mathbf{x}[\mathbf{i}]) \in \mathbb{R}^q.$ $Z(k, |\mathbf{x}|)$

$$1 \leq j \leq k,$$

$$1 \leq t \leq |\mathbf{x}|,$$

$$z(Z_j \mathbf{x}_t) \quad 1 \leq j \leq k,$$

$$Z_j \mathbf{x}_t) \quad 1 \leq j \leq k,$$

$$1 \leq j \leq k,$$

$$z^{\alpha(x-1)} \text{ and } Z_j \text{ is a matrix in}$$

The supervised learning problem becomes

$$\min_{\mathbf{w}\in\mathbb{R}^q}\frac{1}{n}\sum_{i=1}^n L$$

where ψ_k depends on Z. The model can be trained in 2 ways:

- Supervised: jointly learning Z and w with SGD.

Max pooling in RKHS and extensions

Experiments

Protein fold recognition on SCOP 1.67

FIOLEITTOIL TECOGNICION ON SCOP 1.07								
pooling	one-hot		BLOSUM62					
auROC auROC50 auROC auROC50								
			0.834	0.504				
	0.830	0.566						
	0.837	0.572	0.866	0.621				
mean	0.829	0.541	0.840	0.571				
max	0.844	0.587	0.871	0.629				
GMP	0.848	0.570	0.852	0.609				
mean	0.805	0.504	0.833	0.570				
Protein fold classification on SCOP 2.06								
	,	Level-strat family	ified accuracy superfamily	(top1/top5) fold				
- 8	4.53 86.48	82.20/84.50	86.90/88.40	18.90/35.100				
843k 8	4.11 94.29	90.24/95.77	82.33/94.20	45.41/69.19				
843k 8	5.29 94.95	84.31/94.80	85.99/95.22	71.35/84.86				
	pooling mean max GMP mean \$sification Params t 2920k 7 843k 8	pooling or auROC 0.830 0.837 mean 0.829 max 0.844 GMP 0.848 mean 0.805 ssification on SCO Params Accuracy top 1 top 5 - 84.53 86.48 920k 73.00 90.25 843k 84.11 94.29	pooling one-hot auROC auROC50 auROC auROC50 0.830 0.566 0.837 0.572 mean 0.829 0.541 max 0.844 0.587 GMP 0.848 0.570 mean 0.805 0.504 ssification on SCOP 2.06 2.064 #Params Accuracy Level-strat top 1 top 5 75.87/91.77 843k 84.11 94.29 90.24/95.77	pooling one-hot BLOS auROC auROC50 auROC 0.834 0.830 0.566 0.837 0.572 0.866 mean 0.829 0.541 0.840 max 0.844 0.587 0.871 GMP 0.848 0.570 0.852 mean 0.805 0.504 0.833 ssification on SCOP 2.06 #Params Accuracy Level-stratified accuracy top 1 top 5 family superfamily - 84.53 86.48 82.20/84.50 86.90/88.40 920k 73.00 90.25 75.87/91.77 72.23/90.08				

FIOLEIITIOIUTE	0511101		1 1.07					
Method	pooling	one-hot		BLOSUM62				
		auROC	auROC5	0 auROC	auROC50			
LA-kernel				0.834	0.504			
LSTM		0.830	0.566					
CKN[1]		0.837	0.572	0.866	0.621			
RKN	mean	0.829	0.541	0.840	0.571			
RKN	max	0.844	0.587	0.871	0.629			
RKN	GMP	0.848	0.570	0.852	0.609			
RKN (unsup)	mean	0.805	0.504	0.833	0.570			
Protein fold classification on SCOP 2.06								
Method		Accuracy p 1 top 5	Level-strat family	ified accuracy superfamily	(top1/top5) fold			
PSI-BLAST	- 84	1.53 86.48	82.20/84.50	86.90/88.40	18.90/35.100			
DeepSF					51.35/67.57			
CKN (512 filters)	843k 84	1.11 94.29	90.24/95.77	82.33/94.20	45.41/69.19			
RKN (512 filters)	843k 8 5	5.29 94.95	84.31/94.80	85.99/95.22	71.35/84.86			

Relevant reference

[1] D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel networks. Bioinformatics, 35(18):3294--3302, 02 2019.

Learning strategies

$L\left(\langle \psi_k(\mathbf{x}_i), \mathbf{w} \rangle, y_i\right) + \frac{\mu}{2} \|\mathbf{w}\|^2,$

• **Unsupervised:** learning *Z* with **K-means** over (subsampled) k-mers (eventually with gaps). Then train a linear classifier.

• The **sum** can be replaced by a **max**, the corresponding recursive equations can be obtained by replacing all the sum with max. • Generalized max pooling (GMP): build a representation φ_{gmp} such that $\langle \varphi_{gmp}, \varphi_i \rangle_{\mathcal{H}} = 1$ for a set of features $(\varphi_1, \ldots, \varphi_N)$ in \mathcal{H}^N . Multilayer extension and link with string kernels in [1].

(2)