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Overview

Kernel supervised learning for sequence objects

min
f∈H

1
n

n∑
i=1
L(yi, f (xi)) + µ

2
‖f‖2

H

x1, . . .xn ∈ X are sequences (biological sequences or texts).

Goal: learning a predictive and interpretable function f : X → Y .

From k-mers to gap-allowed k-mers modeling

Convolutional kernel networks [1] that model k-mers:

KCKN(x,x′) =
|x|∑
i=1

|x′|∑
j=1

K0 (x[i : i + k],x′[j : j + k])

K0 is a Gaussian kernel over one-hot representations of k-mers.

A continuous relaxation of the mismatch kernel.

ϕ(x) := ∑|x|
j=1ϕ0(x[j : j + k])with ϕ0 the kernel mapping

associated toK0.

Scalable and task-adaptivewith Nyström approximation.

Interpretable using end-to-end training with few filters.

Limitation: unable to capture gappedmotifs.

Recurrent kernel networks that generalize k-mers with gaps:

KRKN(x,x′) =
∑

i∈I(k,|x|)

∑
j∈I(k,|x′|)

λgaps(i)λgaps(j)K0(x[i],x′[j])

Take gapped k-mers into account. λgaps(i) penalizes the gaps.
ϕ(x) = ∑

i∈I(k,|x|) λ
gaps(i)ϕ0(x[i]).

Computationally fast using dynamic programming.

Leads to a particular RNNwith a kernel interpretation.

Definition of gap-allowed k-mers

For 1 ≤ k ≤ n ∈ N, we denote by I(k, n) the set of sequences of
indices with k elements i = (i1, . . . , ik), with 1 ≤ i1 < · · · < ik ≤ n.
For a sequence x = x1 . . . xn ∈ X of length n, for a sequence of
indices i ∈ I(k, n), we define a k-substring as:

x[i] = xi1xi2 . . . xik.

The length of the gaps in the substring is

gaps(i) = number of gaps in the substring indices.

Example: x = BAARACADACRB

i = (4, 5, 8, 9, 11) x[i] = RADAR gaps(i) = 3

A feature map of RKN

A feature vector of RKN for x is a mixture of Gaussians centered

at x[i], weighted by the corresponding λgaps(i).

k-mer kernel embedding

one 4-mer of x

i1 i2 λ i3 λ i4

xi

i1 i2 i3 i4

λ2ϕ(xi)

one-layer k-subsequence kernel

x

i1 i2 λ i3 λ ik

all embedded
k-mers

λgap(i)ϕ(xi)

pooling

∑
i
λgap(i)ϕ(xi)

Nyström approximation and RNNs

Nyström approximation:

E0 = span(ϕ0(z1), . . . , ϕ0(zq))
ψ0(x) := K

−1
2

ZZKZ(x)
where [KZZ]ij = K0(zi, zj)
and [KZ(x)]i = K0(zi, x).

φ(z1)
φ(z2)

Hilbert space F

E0

φ0(x)

ψ0(x)
φ0(x

′)

ψ0(x
′)

Finite-dimensional projection of the kernel map: given a set of

anchor points Z = (z1, . . . , zq) with zi ∈ Rk×d, we project ϕ0(x)
orthogonally onto E0 such that K0(x, x′) ≈ 〈ψ0(x), ψ0(x′)〉Rq. An

approximate feature map forKRKN is

ψk(x) =
∑

i∈I(k,|x|)
λgaps(i)ψ0(x[i]) = K

−1
2

ZZ

∑
i∈I(k,|x|)

λgaps(i)KZ(x[i]) ∈ Rq.

Fast computation with dynamic programming:

For any j ∈ {1, . . . , k} and t ∈ {1, . . . , |x|},

ψj(x1:t) = K
−1

2
ZjZj

hj[t]
where cj[t] and hj[t] inRq obeying the recursion

cj[1] = hj[1] = 0 1 ≤ j ≤ k,

c0[t] = 1 1 ≤ t ≤ |x|,
cj[t] = λcj[t− 1] + cj−1[t− 1] � κ(Zjxt) 1 ≤ j ≤ k,

hj[t] = hj[t− 1] + cj−1[t− 1] � κ(Zjxt) 1 ≤ j ≤ k,

(1)

where κ is a non-linear function κ(x) = eα(x−1) and Zj is a matrix in

Rqdwhose i-th row is the j-th row of zi.

Learning strategies

The supervised learning problem becomes

min
w∈Rq

1
n

n∑
i=1
L (〈ψk(xi),w〉, yi) + µ

2
‖w‖2, (2)

where ψk depends onZ . The model can be trained in 2 ways:

Unsupervised: learningZ withK-means over (subsampled)

k-mers (eventually with gaps). Then train a linear classifier.

Supervised: jointly learningZ andwwith SGD.

Max pooling in RKHS and extensions

The sum can be replaced by amax, the corresponding recursive

equations can be obtained by replacing all the sumwith max.

Generalizedmax pooling (GMP): build a representation ϕgmp

such that 〈ϕgmp, ϕi〉H = 1 for a set of features (ϕ1, . . . , ϕN) inHN .

Multilayer extension and link with string kernels in [1].

Experiments

Protein fold recognition on SCOP 1.67

Method pooling one-hot BLOSUM62

auROC auROC50 auROC auROC50

LA-kernel -- -- 0.834 0.504

LSTM 0.830 0.566 -- --

CKN [1] 0.837 0.572 0.866 0.621

RKN mean 0.829 0.541 0.840 0.571

RKN max 0.844 0.587 0.871 0.629

RKN GMP 0.848 0.570 0.852 0.609

RKN (unsup) mean 0.805 0.504 0.833 0.570

Protein fold classification on SCOP 2.06

Method ]Params Accuracy Level-stratified accuracy (top1/top5)

top 1 top 5 family superfamily fold

PSI-BLAST - 84.53 86.48 82.20/84.50 86.90/88.40 18.90/35.100

DeepSF 920k 73.00 90.25 75.87/91.77 72.23/90.08 51.35/67.57

CKN (512 filters) 843k 84.11 94.29 90.24/95.77 82.33/94.20 45.41/69.19

RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86
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