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Some success of deep learning in bioinformatics
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Deep learning for structured data

Current batch Motif scans Features %
of inputs '0(/,:9
ICTAAGCACCGTCT
 TTAGGGGCACCAG m Wm Neural network
[ TACAAATGAGCACAA]

Motif

detectors Thresholds Weights

Current model
parameters

\

[Alipanahi et al., 2015]

Convolutional neural networks for biological sequences
@ borrow ideas from natural image modeling, do not work well when labels are scarce;

@ outperform classical approaches (e.g. kernel methods) in several tasks;
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Deep learning for structured data
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[Kipf and Welling, 2017]

Convolutional neural networks for graphs
@ borrow ideas from natural image modeling, do not work well when labels are scarce;

@ borrow ideas from graph kernels (e.g. Weisfeiler-Lehman graph kernels);
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Deep learning for structured data
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[Kipf and Welling, 2017]

Convolutional neural networks for graphs
@ borrow ideas from natural image modeling, do not work well when labels are scarce;
@ borrow ideas from graph kernels (e.g. Weisfeiler-Lehman graph kernels);

@ how do we describe the functions defined by these networks? Interpretation?
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Supervised learning for structured data modeling

@ Goal: learning a predictive function f : X — R based on the training examples
(Xi» yi)i=1,..,n in X X R

;r;l;;ZLy,, (xi))+  pQ(f)

regularization

empirical risk, data fit
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Kernel-based supervised learning for structured data modeling

@ Goal: learning a predictive function f : X — R based on the training examples
(Xi, ¥i)i=1,..n in X xR

1 n
in=Y Ly, f(x fl2,.
;ne;gnlz; (vir F(xi)) + pl F[13

@ Map data x in X to ®(x) in H and work with linear forms: f(x) = (f, ®(x))x
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Kernel-based supervised learning for structured data modeling

@ Goal: learning a predictive function f : X — R based on the training examples
(Xi, ¥i)i=1,..n in X xR

I 5
min ; L(yi, £(xi)) + pll F1l%-
o f(x) = (f,®(x))y but ®(x) may be high or infinite-dimensional.

@ Learning only requires manipulating inner-products K(x, x") = (®(x), ®(x'))%.
@ The predictive function can be regularized by controlling ||.||%.
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Bridging the gap with deep kernel machines

Deep learning for kernels:
@ Scalable learning with finite-dimensional embeddings;
@ Deep networks with a geometric interpretation and regularization principles;

@ End-to-end learning with kernels?
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Bridging the gap with deep kernel machines

Deep learning for kernels:
@ Scalable learning with finite-dimensional embeddings;
@ Deep networks with a geometric interpretation and regularization principles;

@ End-to-end learning with kernels?

Deep kernel machines for sequences and graphs

Success of deep kernels for image classification [Mairal, 2016];
A large number of well-studied kernels for sequences and graphs;

Understand building blocks of deep networks through classical kernels?

Build deep kernels for sequences and graphs that perform as well as deep networks?
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Contributions of the thesis

Biological sequence modeling

@ D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel
networks.
Bioinformatics, 2019a and also in Research in Computational Molecular Biology (RECOMB),
2019c

@ D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks.
In Advances in Neural Information Processing Systems (NeurlPS), 2019b
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Contributions of the thesis

Biological sequence modeling

Graph modeling

@ D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-structured data.
In International Conference on Machine Learning (ICML), 2020
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Contributions of the thesis

Biological sequence modeling
Graph modeling

Feature aggregation for structured data
@ G. Mialon™, D. Chen", A. d’Aspremont, and J. Mairal. A trainable optimal transport embedding

for feature aggregation.
arXiv preprint arXiv:2006.12065, 2020
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Contributions of the thesis

Biological sequence modeling
Graph modeling
Feature aggregation for structured data

Other work on regularization for deep neural networks
@ A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural

networks.
In International Conference on Machine Learning (ICML), 2019
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Contributions of the thesis

Biological sequence modeling

Graph modeling

Feature aggregation for structured data

Other work on regularization for deep neural networks

Software: https://dexiong.me/software/
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Biological Sequence Modeling

D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel
networks.
Bioinformatics, 35(18):3294-3302, 2019a

D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks.
In Advances in Neural Information Processing Systems (NeurlPS), 2019b
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Sequence modeling as a supervised learning problem

DNA sequences Is/which TF bound?
o S
—— G
@ O o
. S
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Sequence modeling as a supervised learning problem

DNA sequences Is/which TF bound?

. oy
*— 3

*—eo e
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@ Biological sequences x1,...x, € X and their associated labels y1, ..., y,.
@ Goal: learning a predictive and interpretable function f : X — R

=57 Ly, f( Q(f
?;'an(y )+ pQ(f)

regularization

empirical risk, data fit
@ How do we define the functional space F7
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String kernels

= Y 0u(x)du(x') = (@(x), ®(x),

uc Ak
where u is a k-mer over an alphabet A and §,(x) can be:
@ the number of occurrences of u in x = spectrum kernel [Leslie et al., 2002]

@ the number of occurrences of u in x up to m mismatches = mismatch
kernel [Leslie et al., 2004]

@ the number of occurrences of u in x allowing gaps, with a weight decaying
exponentially with the number of gaps = substring kernel [Lodhi et al., 2002]

The feature map ®(x) can be interpreted as a histogram of subsequence
occurrences.
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Convolutional kernel networks for sequences

We consider a continuous relaxation of the mismatch kernel

|x|—k+1 |x'|—k+1

Kekn (X, x Z Z Ko( x 1:+k] 7XL,J+/<])

one k mer
@ We use one-hot encoding to represent k-mers:
A 00010
110 00
X[,':,'+5] = TTGAG — C 0000 0
G 0 01 01

@ Kp is a Gaussian kernel over one-hot representations of k-mers (in R¥*9).

[Chen et al., 2019a, Morrow et al., 2017]
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Convolutional kernel networks for sequences

We consider a continuous relaxation of the mismatch kernel

[X|—k=+1 |x'|—k+1
Kekn(x, X) Z Z {0 X:H—k]) @o(X/L,';j+k]))>-

one k mer

@ We use one-hot encoding to represent k-mers:

A
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@ Kp is a Gaussian kernel over one-hot representations of k-mers (in R¥*9).

[Chen et al., 2019a, Morrow et al., 2017]
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Convolutional kernel networks for sequences

We consider a continuous relaxation of the mismatch kernel

[x|—k+1 [x'|—k+1
KCKN(ny/):< > wolxgiivn) D (PO(X/D':j+k])>'

i=1 j=1

®(x) d(x')
@ We use one-hot encoding to represent k-mers:

A
X[,':,'+5] = TTGAG

o O~ O
o O~ O
= O O O
O O O
= O O O

C
G
@ Kp is a Gaussian kernel over one-hot representations of k-mers (in R¥*9).

[Chen et al., 2019a, Morrow et al., 2017]
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Nystréom approximation of kernel mapping

KO(X, X/) = <(P0(X)a ‘PO(X,)>'HO

@ Nystrom provides a finite-dimensional approximation ¢g(x) € RY by
orthogonally projecting o(x) onto some finite-dimensional subspace:

€o := span(po(21), - - - po(2q)) parametrized by Z = {z1, ..., zq}

Hilbert space Hg
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Nystréom approximation of kernel mapping

Ko(x, ) = (0(x), 20(¥)) s, ~ (Mpo(x), Mo (') g

@ Nystrom provides a finite-dimensional approximation ¢(x) € RY by
orthogonally projecting o(x) onto some finite-dimensional subspace:

€o := span(po(21), - - - po(2q)) parametrized by Z = {z1, ..., zq}

Hilbert space Ho
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Nystréom approximation of kernel mapping

KO(X7X/) = <(P0(X)7900(X,)>'H0 ~ <|_|(p0(X), n(po(xl»’Ho = <w0(X)7w0(X/)>Rq .

@ Nystrom provides a finite-dimensional approximation ¢(x) € RY by
orthogonally projecting o(x) onto some finite-dimensional subspace:

€o := span(po(21), - - - po(2q)) parametrized by Z = {z1, ..., zq}

Hilbert space Ho
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Nystréom approximation of kernel mapping

KO(X7X/) = <(P0(X)7900(X,)>'H0 ~ <|_|(p0(X), n(po(xl»’Ho = <w0(X)7w0(X/)>Rq .

@ Nystrom provides a finite-dimensional approximation g(x) € R9 by
orthogonally projecting o(x) onto some finite-dimensional subspace:

&o := span(po(21), - -, po(2q)) parametrized by Z = {z1, ..., 74}

@ General case: .
Po(x) = [Ko(z,',zj-)]E / [Ko(z1,%), ..., Ko(zg,x)] " = Ko(Z, Z)"Y2Ky(Z, x)

[Williams and Seeger, 2001, Zhang et al., 2008]
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Nystréom approximation of kernel mapping

KO(X7X/) = <(P0(X)7900(X,)>'H0 ~ <|_|(p0(X), n(po(xl»’Ho = <w0(X)7w0(X/)>Rq .

@ Nystrom provides a finite-dimensional approximation 1g(x) € R9 by
orthogonally projecting o(x) onto some finite-dimensional subspace:
Eo = span(wo(z1), ..., vo0(zq)) parametrized by Z = {z,...,z4}
@ Case of dot-product kernels Ky(x, x") = k((x,x")):

Yo(x) = K(ZTZ)V2k(Z 7 x).

linear operation - pointwise non-linearity - linear operation.
r(s) = e*(>=1) for the Gaussian kernel on unit sphere.

[Williams and Seeger, 2001, Zhang et al., 2008]
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Single and multi-layer CKN for sequences
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Single and multi-layer CKN for sequences
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How do we learn the anchor points Z7?

Without supervision:

@ we extract a large number (say 100 000) k-mers from the previous layer
computed on a sequence database;

e perform a K-means algorithm to learn the anchor points as the centroids;
@ compute the projection matrix x(Z ' Z)~1/2.
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How do we learn the anchor points Z7?

Without supervision:

@ we extract a large number (say 100 000) k-mers from the previous layer
computed on a sequence database;
@ perform a K-means algorithm to learn the anchor points as the centroids;

@ compute the projection matrix x(Z ' Z)~1/2.

With supervision:
@ using back-propagation on a supervised loss function with respect to Z;
o differentiating x(Z " Z)~1/? requires an eigendecomposition;

@ use the above unsupervised procedure as initialization.
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Visualization of anchor points for TF binding prediction

We use the representations W(x) obtained with a single-layer CKN

n

min LwT\IJx-,-+ w|)?,
wer s 2 LOUT V) 50) + e

where y is a binary label which equals to 1 if x binds to the TF of interest.

FOXA_disc1 GATA _disct

i TNITTACTgé J <A ATAAgg
;; . I : Il-!-écgggflgg% v ATAA - “;& = gf
. wiTrree, | GATaac. .
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Visualization of anchor points for TF binding prediction

We use the representations W(x) obtained with a single-layer CKN

n
min LwT\IJx-,-+ w|)?,
wer s 2 LOUT V) 50) + e

where y is a binary label which equals to 1 if x binds to the TF of interest.

FOXA_disc1 GATA _disct

" TATTTAcg%{CéATAAgE

————————————

Limitation: unable to capture gapped motifs (e.g. useful to model genetic insertions.)
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From k-mers to k-substring

k-mers with gaps
@ For a sequence x = x1...x, € X of length n, for a sequence of ordered indices
i = (f1,...,ik) € Z(k, n), we define a k-substring as:

X[i] = Xjy Xip « + + Xij -

@ The length of the gaps in the substring is

gaps(i) = number of gaps in the indices.

@ Example: x = BAARACADACRB
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Recurrent kernel networks

Comparing all the k-mers between a pair of sequences

[x|—k+1|x'|—k+1

KCKN(X,X/) = Z Z Ko (X[i:i+k]7xij:j+k]> :
j=1

i=1

@ The kernel mapping is ®(x) = Zlﬂ;kﬂ ©o(X{i:it4])

[Lodhi et al., 2002, Lei et al., 2017]
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Recurrent kernel networks

Comparing all the k-substrings between a pair of sequences

KRKN(X,X’) — Z Z /\gaps(i)/\gaps(j)KO (X[i]7xfj]> )

i€Z(k,|x|) JEZ(k,|X'|)

© The kernel mapping is ®(x) = > ic7(x |x)) /\gaps(i)(po(x[i])_
@ This is a differentiable relaxation of the substring kernel.

@ )\ € [0;1] is a hyperparameter that penalizes the gaps in k-substrings.

[Lodhi et al., 2002, Lei et al., 2017]
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Approximation and recursive computation of RKN

Approximate feature map of RKN kernel The approximate feature map of Kgkn via
Nystrom approximation is

U(x)= Y APy (xp),

i€Z(k,|x|)

where, as usual with a dot-product kernel, 1o(x) = K(Z " Z2)~Y/2k(Z T xpy).

@ Exhaustive enumeration of all substrings can be exponentially costly.
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Approximation and recursive computation of RKN

Approximate feature map of RKN kernel The approximate feature map of Kgkn via
Nystrom approximation is

V(x) = Z )\gapS(i)Q/)O(x[i]),
IEZ(k,|x])
where, as usual with a dot-product kernel, 1o(x) = K(Z " Z2)~Y/2k(Z T xpy).
@ Exhaustive enumeration of all substrings can be exponentially costly.
@ The sum can be computed using dynamic programming [Lodhi et al., 2002],

@ which leads to a particular recurrent neural network [Lei et al., 2017].
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The feature map of RKN

When Kj is a Gaussian kernel, the feature map of RKN is a mixture of Gaussians
centered at x[;), weighted by the corresponding penalization Agaps(i)

)\2900(X[i]) |:| Zi )\gap(i)<p0(x[i]) |:|

pooling

all embedded
= D:I:I:‘ k-substrings |:| Trrnene |:|

11 12 [3 N Agal)(i)¢0(x[i])
e Y o B A |
i1 2 A i3 A g i1 l2 A i3 A g
k-substring kernel embedding one-layer RKN

Figure: Example of Kgkn for k =4
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Transcription factor binding prediction

2.1e-11

0.75 [} 075 ]
(] . $ .
0.70 ~ L 0.70-
N CKN-seq  unsup CKN-seq oNN NN+ CKN-seq CKN-seq+  CKN-seq++  uCKN-seq  uCKN-seq+
Method Method
(a) ENCODE (b) only 500 subsamples from ENCODE

@ Increasing flayers does not improve performance for short sequences (~101bp).
@ CKNs outperform CNNs especially when few training examples are available.

@ In this case, non-supervision and data augmentation can improve performance.
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Protein fold classification

Protein fold classification on SCOP 2.06 [Hou et al., 2018] (sequence features include

one-hot encoding, PSSM, secondary structure and solvent accessibility)
A dataset with few labels: 19,245 sequences from 1,195 different classes of fold.

Method fParams Accuracy Level-stratified accuracy (topl/top5)
topl top5 family superfamily fold
PSI-BLAST - 8453 86.48 82.20/84.50  86.90/88.40 18.90/35.100
DeepSF (CNN) 920k 73.00 90.25 75.87/91.77 72.23/90.08  51.35/67.57
CKN (128 filters) 211k  76.30 02.17 83.30/94.22  74.03/91.83  43.78/67.03
CKN (512 filters) 843k 84.11 9429 90.24/95.77 82.33/94.20  45.41/69.19
RKN (128 filters) 211k 77.82 9289 76.91/93.13 78.56/92.98  60.54/83.78
RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

[Hou et al., 2018, Chen et al., 2019a,b]
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Protein fold classification

Protein fold classification on SCOP 2.06 [Hou et al., 2018] (sequence features include

one-hot encoding, PSSM, secondary structure and solvent accessibility)
A dataset with few labels: 19,245 sequences from 1,195 different classes of fold.

Method fParams Accuracy Level-stratified accuracy (topl/top5)
topl top5 family superfamily fold
PSI-BLAST - 8453 86.48 82.20/84.50  86.90/88.40 18.90/35.100
DeepSF (CNN) 920k 73.00 90.25 75.87/91.77 72.23/90.08  51.35/67.57
CKN (128 filters) 211k  76.30 02.17 83.30/94.22  74.03/91.83  43.78/67.03
CKN (512 filters) 843k 84.11 9429 90.24/95.77 82.33/94.20  45.41/69.19
RKN (128 filters) 211k 77.82 9289 76.91/93.13 78.56/92.98  60.54/83.78
RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

Can we do even better?

Replacing the mean pooling with our optimal transport based adaptive pooling

(OTKE [Mialon*, Chen*, d'Aspremont and Mairal 2020]): 85.29 — 91.24
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Basic idea: a trainable optimal transport embedding

@ View sequence as a set of k-mer features p(x;) extracted by CKN before pooling.

@ Compare a pair of sequences based on an optimal transport between two sets:

K —Pjir(xj, x;) — eH(P), 1
(x,X) Pergmx,)z j(xi,x}) — cH(P) (1)

Ux,X)={PeR™" :P1,=1/nand PT1, =1/n'}.

G. Mialon*, D. Chen* et al. A trainable optimal transport embedding for feature aggregation. arXiv 2020
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Basic idea: a trainable optimal transport embedding

Dy(x)1 ... DPu(x),

o Let P(x,z) € R"*P be the solution of the OT problem 1 between z and x, and

®4(x) == VP x <ZP x,2)i1p(X ZP(X 2)ipp(x )> = /px P(x,2) " p(x)

o A valid kernel can be defined as K(x,x") = >°F_; (®,(x);, ®,(x');).

@ Parameter z can be learned in both unsupervised and supervised ways.
G. Mialon*, D. Chen* et al. A trainable optimal transport embedding for feature aggregation. arXiv 2020
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Graph Modeling

D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-structured data.
In International Conference on Machine Learning (ICML), 2020
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Graph-structured data are ubiquitous

Propanal (E)(Z)-1-P mpuml Acetone
Acetaldehyde Vinyl Alcohol Ethylene Oxide
Aldehyde Enol

(c) molecules

(e) social networks (f) chemical pathways
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Learning graph representations

State-of-the-art models for representing graphs
@ Deep learning for graphs: graph neural networks (GNNs)
o Graph kernels: Weisfeiler-Lehman (WL) graph kernels
@ Hybrid models attempt to bridge both worlds: graph neural tangent kernels
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Learning graph representations

State-of-the-art models for representing graphs

@ Deep learning for graphs: graph neural networks (GNNs)

o Graph kernels: Weisfeiler-Lehman (WL) graph kernels

@ Hybrid models attempt to bridge both worlds: graph neural tangent kernels
Our model:

@ A new type of multilayer graph kernel: more expressive than WL kernels

@ Learning easy-to-regularize and scalable unsupervised graph representations

@ Learning supervised graph representations like GNNs
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Graphs with node attributes

G=V,Ea:V—R3

a(u) = [0.3,0.8,0.5]

@ A graph is defined as a triplet (V, &, a);
@ V and & correspond to the set of vertices and edges;
@ a:V — R%is a function assigning attributes to each node.
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Graph kernel mappings

@ Map each graph G in X to a vector (G) in H, which lends itself to learning tasks.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
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Graph kernel mappings

@ Map each graph G in X to a vector (G) in H, which lends itself to learning tasks.

@ A large class of graph kernel mappings can be written in the form

0(G) == Z Ybase(fc(u))  where ppase embeds some local patterns (¢ (u) to H.
uey

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
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Basic kernels: walk and path kernel mappings

@ Pi(G, u) := paths of length k from node v in G. The k-path mapping is
(Ppath(u) = Z 5a(p) = ¢path(G) = Z Z 6a(p)
PEPK(G,u) ueG pePy(G,u)

@ a(p): concatenated attributes in p; d: the Dirac function.
@ ®,in(G) can be interpreted as a histogram of paths occurrences.
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Basic kernels: walk and path kernel mappings

@ Pi(G, u) := paths of length k from node v in G. The k-path mapping is

(Ppath(u) = Z 5a(p) = ¢path(G) = Z Z 6a(p)

PEPK(G,u) ueG pePy(G,u)

@ a(p): concatenated attributes in p; d: the Dirac function.

@ ®,in(G) can be interpreted as a histogram of paths occurrences.

@ Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.
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A relaxed path kernel

1.0 1
0.8 A
0.6
0.4
0.2 A

0.0 1

Issues of the path kernel mapping:
@ J allows hard comparison between paths thus only works for discrete attributes.

6
Gaussian

B

(Ppath(u) = Z 5a(p)(')

pEPk(G,U)

@ J is not differentiable, which cannot be “optimized” with back-propagation.
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A relaxed path kernel

1.0 1
0.8 A
0.6
0.4
0.2 A

0.0 1

Issues of the path kernel mapping:
@ J allows hard comparison between paths thus only works for discrete attributes.

6
Gaussian

B

(Ppath(u) = Z 5a(p)(')

pEPk(G,U)

— Y el
pG'Pk(G,U)

@ J is not differentiable, which cannot be “optimized” with back-propagation.

Relax it with a “soft” and differentiable mapping

@ interpreted as the sum of Gaussians centered at each path features from u.

Dexiong Chen PhD defense
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One-layer GCKN: a closer look on the relaxed path kernel

@ We define the one-layer GCKN as the relaxed path kernel mapping

p1(u) == Z e~ lap—I? = Z erer(a(p)) € Ha.

pEP(G,u) PEPK(G,u)

@ This formula can be divided into 3 steps:

e path extraction: enumerating all Px(G, u)
o kernel mapping: evaluating Gaussian embedding prgg of path features
o path aggregation: aggregating the path embeddings
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One-layer GCKN: a closer look on the relaxed path kernel

@ We define the one-layer GCKN as the relaxed path kernel mapping

¢1(u) = Z efaTlHa(P)*'Hz — Z (PRBF ) € Hi.

PEPK(G,u) pEPK(G,u)

@ This formula can be divided into 3 steps:

e path extraction: enumerating all Px(G, u)
o kernel mapping: evaluating Gaussian embedding prgg of path features
o path aggregation: aggregating the path embeddings

@ We obtain a new graph with the same topology but different features

(V,€,a) 2205 (v, €, ¢1)
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Construction of one-layer GCKN

WV, E,01:V = Hy)

T

o1(u) = prer(alp))) + prer(a(ps)) + prer(a(ps))

path aggregation
kernel mapping

path aggregation

wrer(a(ps))
path extraction

o rpr(a(pz)
wrar(a(py))

kernel mapping,

V,€,a:V—RY
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From one-layer to multilayer GCKN

@ We can repeat applying ¢path to the new graph

(V,E, ) ‘ppath (V g S01) Sopath (V g g02) Ppath ) ‘Ppath (V 8 QOJ)

@ ¢j(u) represents the information about a neighborhood of w.
@ Final graph representation at layer j, ®;(G) = >,y ©j(u).
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From one-layer to multilayer GCKN

@ We can repeat applying ¢path to the new graph

(V,E,a) ‘ppath (V g S01) Sopath (V g (p2) @p_ath) ) ‘Ppath (V 8 QOJ)

@ ¢j(u) represents the information about a neighborhood of w.
@ Final graph representation at layer j, ®;(G) = >,y ©j(u).
@ Why is the multilayer model interesting 7

o applying @path once can capture paths: GCKN-path;

e applying twice can capture subtrees: GCKN-subtree;

e so applying even more times may capture higher-order structures ?

o Long paths cannot be enumerated due to computational complexity, yet multilayer
model can capture long-range substructures.

Dexiong Chen PhD defense 32/41



Scalable approximation of Gaussian kernel mapping

SOpath(u) = Z @RBF(a(p))

pe’Pk(G,u)

a 2 e . . . .
o ¢rer(x) = e 21" € % is infinite-dimensional (expensive to compute).

[Chen et al., 2019a,b]
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Scalable approximation of Gaussian kernel mapping

SOpath(u) = Z S«QRBF(a(P))

PEPk(G,U)

a 2 e . . . .
o ¢rer(x) = e 21" € % is infinite-dimensional (expensive to compute).

@ Nystrom provides a finite-dimensional approximation ¥ (x) € R? by orthogonally
projecting ¢rpr(x) onto some finite-dimensional subspace:

span(@rer(21), - - -, prerF(2Zq)) parametrized by Z = {z,..., z4},

where z; € R can be interpreted as path features.

[Chen et al., 2019a,b]
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Scalable approximation of Gaussian kernel mapping

SOpath(u) = Z @RBF(a(p))

PEPk(G,U)

a 2 e . . . .
o ¢rer(x) = e 21" € % is infinite-dimensional (expensive to compute).

@ Nystrom provides a finite-dimensional approximation ¥ (x) € R? by orthogonally
projecting ¢rpr(x) onto some finite-dimensional subspace:

span(@rer(21), - - -, prerF(2Zq)) parametrized by Z = {z,..., z4},

where z; € R can be interpreted as path features.
@ The parameters Z can be learned by

o (unsupervised) K-means on the set of path features;
o (supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b]
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Comparison of GCKN and GNN

GCKN VS. GNN
Veekn(G) = Y 4j(u) Wenn(G) = Y fi(w)
ueG ueG
_1
G = Y KT RZTeap) )= Y ReLUZTf1(v)

PEP(G,u) veN (u)

local path aggregation neighborhood aggregation
projection in a known RKHS unknown functional space

both supervised and unsupervised only supervised

If G is a (directed) path graph, GCKN becomes a CKN while GNN will not recover a
CNN for k > 1.

*—o—0 0 0 °
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Experiments on graphs with discrete attributes

MUTAG

@ Accuracy improvement with
respect to the WL subtree
kernel.

@ GCKN-path already
outperforms the baselines.

PRQTEINS

PTC @ Increasing number of layers
brings larger improvement.

@ Supervised learning does not

== WL subtree improve performance, but

== GNTK
...... aeN leads to more compact
""" GIN representations.

—— GCKN-path-unsup
—— GCKN-subtree-unsup
GCKN-subtree-sup

[Shervashidze et al., 2011, Du et al., 2019, Xu et al., 2019, Kipf and Welling, 2017]
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Experiments on graphs with continuous attributes

ENZYMES

@ Accuracy improvement with
respect to the WWL kernel.

@ Results similar to discrete
case.

PROTEINS

@ Path features seem
presumably predictive enough.

--- WWL
GNTK

—— GCKN-path-unsup

—— GCKN-subtree-unsup
GCKN-subtree-sup

BZR

[Du et al., 2019, Togninalli et al., 2019]



Model interpretation for mutagenicity prediction

@ Idea: find the minimal connected component that preserves the prediction.

C O C H

N
Il =

F

GCKN

[Ying et al., 2019]
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Conclusion and Future Research
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Conclusion

Convolutional and recurrent kernel networks for biological sequences
@ Multilayer kernels for biological sequences.
@ Achieve SOTA in TF binding prediction and protein fold classification.
@ RKN is able to model gaps with a RNN structure, useful for remote homology detection.

@ Best results were obtained with one-layer models for short sequences.

Non-supervision and data augmentation can improve performance when labels are scarce.
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Conclusion

Convolutional kernel networks for graphs
@ A multilayer kernel for graphs based on paths.

@ Allows to control the trade-off between computation and expressiveness.

A straightforward model interpretation is provided.

Long path features could be useful for toxicology prediction.

Ongoing collaboration on protein model quality assessment.
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Conclusion

Supervised vs. unsupervised representations
@ Without supervision, models provide effective but high-dimensional embeddings.
@ With supervision, models trained with backpropagation are much more compact.
Feature aggregation
@ Max pooling generally outperforms mean pooling in practice but less stable.
@ Max pooling can be simulated in RKHSs.

@ An optimal transport based adaptive pooling performs even better.
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Future research and perspectives

Efficient learning pipelines to deal with genome-scale data
@ Training CKNs or CNNs directly on genome-scale data can be costly and inefficient.
@ Localize large relevant regions with selection methods?

@ Then perform refined learning on selected regions.
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Future research and perspectives

More compact and accurate unsupervised representations
@ Nystrom approximation is not efficient for higher layers.
@ Better approximation methods for deep kernels [Shankar et al., 2020]?

@ Self-supervised learning to learn more compact representations [Caron et al., 2018,
Rives et al., 2019]?
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Future research and perspectives

Performance gap between kernel methods and ResNets

@ ResNets perform “hierarchical learning” while kernels cannot [Allen-Zhu and Li,
2019].

@ Deep kernels can perform as well as convolutional networks but worse than
ResNets on CIFAR-10 [Shankar et al., 2020].

@ Multiple kernel learning can select kernels defined on different layers.
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Future research and perspectives

Better feature aggregation for structured data
@ Optimal transport for better feature aggregation, theoretical guarantee?

@ Other inductive bias from kernel literature (e.g. Fisher kernels)?
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Thank you!
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Visualization of anchor points in CKN
@ For a one-layer, find the preimage of filter i by optimizing
: 2
min [leo(u) = wo(2)l3-

where M C R¥*# is an appropriate simplex of motifs.
@ Projection onto the simplex induces sparsity thus more informative motif.

Hilbert space H, C! A

o (2)

vo(z1)

preimage 0 0 02 07 06 0

A

C|04 07 02 03 02 04
G|04 01 01 0 0.1 06
T

02 02 05 0 01 0

motif associated with ¢g(21)
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Computation of recurrent kernel networks

The approximate feature map of Kgkn via Nystrém approximation is

Gk = Y AP Oyo(xfi]) = K72 S ek (x[i]) =

i€Z(j,t) i€Z(j,t)

forany j € {1,...,k} and t € {1,...,|x|}. Z; is a matrix in R9*9 whose i-th column

is the j-th vector of z.

We can prove that h;[t] in R obeying some recursion similar to the one used in

substring kernel

1] = hyf1] = 0

—
IN
—.
IN

-

colt] =1 1<t <Ix
gl = Mgt — 1] + ¢t — O R(Z'x) 1<j<k
hiltl =hjlt — 1]+ ¢ia[t — 1] O K(Z'x:) 1<j<k

where £ is a non-linear function r(x) = e**~1).

Dexiong Chen PhD defense

47 /41



Multilayer construction of RKNs

o (7)) el (k)

(n) |x| >
X" € Hn prediction

. layer

oMy =0 oMo oMo ens oMo

x(M) e 7-[|1X|

first layer kernel
K

xeX -
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Results on SCOP 1.67

Protein fold recognition on SCOP 1.67 (widely used benchmark)

Method pooling one-hot BLOSUM®62
auROC auROC50 auROC auROC50

SVM-pairwise 0.724 0.359

Mismatch 0.814 0.467

LA-kernel - - 0.834 0.504
LSTM 0.830 0.566 - -
CKN 0.837 0.572 0.866 0.621
RKN mean 0.829 0.541 0.840 0.571
RKN max 0.844 0.587 0.871 0.629

RKN (unsup)  mean  0.805 0.504 0.833 0.570

[Liao and Noble, 2003, Leslie et al., 2003, Vert et al., 2004, Hochreiter et al., 2007, Chen et al., 2019a]
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Walks vs paths

Figure: An example about connectivity where @uaik(G) = @waik(G’) but ©path(G) # Ppath(G’)

e Tottering walks seem irrelevant for many applications.
@ Path kernels are generally more expressive than walk kernels.

@ Most existing methods rely on walks for computational reason.
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Weisfeiler-Lehman subtree kernel

@ Enumerating subtree patterns can be exponentially costly. Is there a fast way ?
@ WL algorithm: iterative enumeration for graphs with discrete node labels.

o We define a sequence of node labels initialized with ag = a.

o At iteration / > 1, a;(u) = hash([a;—1(u),sort({a;—1(v) | v € N(uv)})]).

@ WL subtree kernel at depth k is defined as

’{subtree(u7 ul) = 6(‘91'(“)’ a;'(ul))
[Shervashidze et al., 2011]
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Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels xyak and Ksubtree ?

WL subtree kernel as a 2-layer walk kernel

Let M(u, u") be the set of exact matchings of subsets of the neighborhoods of two
nodes u and v’. For any u € G and v’ € G’ such that |M(u, )| =1,

Hsubtree(ua Ul) = 5(90wa|k(u)7 (pCvaIk(ul))v (2)

where @ik is the feature map of ki satisfying pwai(u) = ZpGWk(G,u) ws(p) -

e A sufficient condition for |[M(u, u")| = 1: u and v’ have same degrees and both
of them have distinct neighbors.

o If we replace @path instead of @y, We capture subtrees without repeated nodes !
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Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels kyai and Ksuptree !

WL subtree kernel as a 2-layer walk kernel

Let M(u, u") be the set of exact matchings of subsets of the neighborhoods of two
nodes u and u’. For any u € G and v’ € G’ such that [M(u, )| =1,

Kvsubtree(ua U/) = 5(80wa|k(u)’ (p\//valk(u/))7 (2)

where @yl is the feature map of Kwai satistying pwaik(t) = > e, (6,u) 5(P) -

Can we go beyond subtrees to higher order patterns ?

Dexiong Chen PhD defense 52 /41



Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels xyak and Keubtree ?

WL subtree kernel as a 2-layer walk kernel

Let M(u, u") be the set of exact matchings of subsets of the neighborhoods of two
nodes u and v'. For any u € G and v’ € G’ such that |[M(u, )| =1,

Hsubtree(ua U,) = 5(30walk(u)a (Pcvalk(u/))v (2)

where .k is the feature map of Ky, satisfying puaik(u) = Zpewk(G,u) ws(p) -

Can we go beyond subtrees to higher order patterns ?
Composing path kernels !
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Model interpretation of GCKN

@ By construction, Wgckn(G) only depends on G through its set of paths Pk (G)

in_ L(y, (Weckn(P), P'l, 3
o) (7, (Weekn(PY), w)) + p|P'| 3)

@ This problem can be relaxed by introducing a mask M with values in [0; 1]

min _ L(7, (WV1(Pk(G) © M), w)) + pl|M]]1, (4)
Me[0;1]/Px(C)l
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Results for GCKN on graphs with discrete node attributes

Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M COLLAB
size 188 1113 344 4110 1000 1500 5000
classes 2 2 2 2 2 3 3

avg finodes 18 39 26 30 20 13 74
avg fedges 20 73 51 32 97 66 2458
LDP 889+96 733+57 638+66 720+20 685+40 429+37 76.1+14
WL subtree 904457 750+31 599+43 860+18 73.8+39 509+£38 789+19
AWL 87.9+9.8 - - - 745+59 515+£36 739+19
RetGK 90.3+11 758+06 625+16 8454+02 71.9+10 477+03 81.0+0.3
GNTK 90.0£85 756+42 679+69 842+15 769+36 528+46 83.6+1.0
GCN 85658 76.0+32 642+43 802+20 740+34 519+38 79.0+1.8
PatchySAN 926+42 759+28 600+48 786+19 71.0+22 452+28 T726+£22
GIN 89.4+56 762+28 646+70 827+17 751+51 523+28 802+19
GCKN-walk-unsup 928+6.1 75.7+40 659+20 80.1+18 759+37 534+47 817414
GCKN-path-unsup 928+6.1 76.0+34 67.3+50 8l14+16 759+37 53.0+£31 823+1.1
GCKN-subtree-unsup 95.0+5.2 76.4+39 708+46 839+16 778+26 535+41 832+1.1
GCKN-3layer-unsup  97.2+28 759432 694+35 839+12 77.2+38 534+36 834+15
GCKN-subtree-sup 91.6+6.7 762+25 684+74 820+£12 765+57 533+£39 829+16
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Results for GCKN on graphs with continuous node attributes

Dataset ENZYMES PROTEINS BZR COX2
size 600 1113 405 467
classes 6 2 2 2
attr. dim. 18 29 3 3

avg finodes 32.6 39.0 35.8 41.2
avg fledges 62.1 72.8 38.3 435
RBF-WL 684+15 754+03 81.0+17 755415
HGK-WL 63.0+07 7594+02 78.6+0.6 78.1+05
HGK-SP 66.4+04 758+£02 7644+07 726+1.2
WWL 733+09 779+08 844+20 783405
GNTK 69.6+09 757+02 855+08 79.6+04
GCKN-walk-unsup 735+05 765+03 853+05 80.6+12
GCKN-path-unsup 75.7+1.1 763+05 859+05 81.2+0.8
GCKN-subtree-unsup  74.8+0.7 775+03 858+09 81.8+0.8
GCKN-3layer-unsup 746+08 775+04 847+10 82.0+0.6
GCKN-subtree-sup 728+10 776+04 86.4+05 81.7+07
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