
Structured Data Modeling with Deep Kernel Machines
and Applications in Computational Biology

Dexiong Chen

Inria Grenoble

December 15, 2020

Advisors: Julien Mairal (Inria), Laurent Jacob (CNRS/U. Lyon 1)
Reviewers: Chloé-Agathe Azencott (Mines ParisTech), Karsten Borgwardt (ETH Zürich)
Examiners: Florence d’Alché-Buc (Télécom Paris), Arthur Gretton (UCL)

Dexiong Chen PhD defense 1 / 41

Some success of deep learning in bioinformatics

(a) transcription factor binding prediction (b) protein folding prediction

(c) drug discovery (d) distinguishing enzyme structures

Dexiong Chen PhD defense 2 / 41

Deep learning for structured data

[Alipanahi et al., 2015]

Convolutional neural networks for biological sequences
borrow ideas from natural image modeling, do not work well when labels are scarce;
outperform classical approaches (e.g. kernel methods) in several tasks;

how do we describe the functions defined by these networks? Interpretation?

Dexiong Chen PhD defense 3 / 41

Deep learning for structured data

[Kipf and Welling, 2017]

Convolutional neural networks for graphs
borrow ideas from natural image modeling, do not work well when labels are scarce;
borrow ideas from graph kernels (e.g. Weisfeiler-Lehman graph kernels);

how do we describe the functions defined by these networks? Interpretation?

Dexiong Chen PhD defense 3 / 41

Deep learning for structured data

[Kipf and Welling, 2017]

Convolutional neural networks for graphs
borrow ideas from natural image modeling, do not work well when labels are scarce;
borrow ideas from graph kernels (e.g. Weisfeiler-Lehman graph kernels);
how do we describe the functions defined by these networks? Interpretation?

Dexiong Chen PhD defense 3 / 41

Supervised learning for structured data modeling

Goal: learning a predictive function f : X → R based on the training examples
(xi , yi)i=1,...,n in X × R

min
f ∈F

1
n

n∑

i=1

L(yi , f (xi))

︸ ︷︷ ︸
empirical risk, data fit

+ µΩ(f)︸ ︷︷ ︸
regularization

.

Dexiong Chen PhD defense 4 / 41

Kernel-based supervised learning for structured data modeling

Goal: learning a predictive function f : X → R based on the training examples
(xi , yi)i=1,...,n in X × R

min
f ∈H

1
n

n∑

i=1

L(yi , f (xi)) + µ‖f ‖2H.

Map data x in X to Φ(x) in H and work with linear forms: f (x) = 〈f ,Φ(x)〉H

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Dexiong Chen PhD defense 5 / 41

Kernel-based supervised learning for structured data modeling

Goal: learning a predictive function f : X → R based on the training examples
(xi , yi)i=1,...,n in X × R

min
f ∈H

1
n

n∑

i=1

L(yi , f (xi)) + µ‖f ‖2H.

f (x) = 〈f ,Φ(x)〉H but Φ(x) may be high or infinite-dimensional.
Learning only requires manipulating inner-products K (x , x ′) = 〈Φ(x),Φ(x ′)〉H.
The predictive function can be regularized by controlling ‖.‖H.

Dexiong Chen PhD defense 5 / 41

Bridging the gap with deep kernel machines

Deep learning for kernels:
Scalable learning with finite-dimensional embeddings;
Deep networks with a geometric interpretation and regularization principles;
End-to-end learning with kernels?

Deep kernel machines for sequences and graphs
Success of deep kernels for image classification [Mairal, 2016];
A large number of well-studied kernels for sequences and graphs;
Understand building blocks of deep networks through classical kernels?
Build deep kernels for sequences and graphs that perform as well as deep networks?

Dexiong Chen PhD defense 6 / 41

Bridging the gap with deep kernel machines

Deep learning for kernels:
Scalable learning with finite-dimensional embeddings;
Deep networks with a geometric interpretation and regularization principles;
End-to-end learning with kernels?

Deep kernel machines for sequences and graphs
Success of deep kernels for image classification [Mairal, 2016];
A large number of well-studied kernels for sequences and graphs;
Understand building blocks of deep networks through classical kernels?
Build deep kernels for sequences and graphs that perform as well as deep networks?

Dexiong Chen PhD defense 6 / 41

Contributions of the thesis

Biological sequence modeling
D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel
networks.
Bioinformatics, 2019a and also in Research in Computational Molecular Biology (RECOMB),
2019c

D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2019b

Graph modeling

Feature aggregation for structured data

Other work on regularization for deep neural networks

Software: https://dexiong.me/software/

Dexiong Chen PhD defense 7 / 41

https://dexiong.me/software/

Contributions of the thesis

Biological sequence modeling

Graph modeling

D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-structured data.
In International Conference on Machine Learning (ICML), 2020

Feature aggregation for structured data

Other work on regularization for deep neural networks

Software: https://dexiong.me/software/

Dexiong Chen PhD defense 7 / 41

https://dexiong.me/software/

Contributions of the thesis

Biological sequence modeling

Graph modeling

Feature aggregation for structured data

G. Mialon*, D. Chen*, A. d’Aspremont, and J. Mairal. A trainable optimal transport embedding
for feature aggregation.
arXiv preprint arXiv:2006.12065, 2020

Other work on regularization for deep neural networks

Software: https://dexiong.me/software/

Dexiong Chen PhD defense 7 / 41

https://dexiong.me/software/

Contributions of the thesis

Biological sequence modeling

Graph modeling

Feature aggregation for structured data

Other work on regularization for deep neural networks

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural
networks.
In International Conference on Machine Learning (ICML), 2019

Software: https://dexiong.me/software/

Dexiong Chen PhD defense 7 / 41

https://dexiong.me/software/

Contributions of the thesis

Biological sequence modeling

Graph modeling

Feature aggregation for structured data

Other work on regularization for deep neural networks

Software: https://dexiong.me/software/

Dexiong Chen PhD defense 7 / 41

https://dexiong.me/software/

Biological Sequence Modeling
D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel
networks.
Bioinformatics, 35(18):3294–3302, 2019a

D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2019b

Dexiong Chen PhD defense 8 / 41

Sequence modeling as a supervised learning problem

DNA sequences Is/which TF bound?

Biological sequences x1, . . . xn ∈ X and their associated labels y1, . . . , yn.
Goal: learning a predictive and interpretable function f : X → R

min
f ∈F

1
n

n∑

i=1

L(yi , f (xi))

︸ ︷︷ ︸
empirical risk, data fit

+ µΩ(f)︸ ︷︷ ︸
regularization

How do we define the functional space F?

Dexiong Chen PhD defense 9 / 41

Sequence modeling as a supervised learning problem

DNA sequences Is/which TF bound?

Biological sequences x1, . . . xn ∈ X and their associated labels y1, . . . , yn.
Goal: learning a predictive and interpretable function f : X → R

min
f ∈F

1
n

n∑

i=1

L(yi , f (xi))

︸ ︷︷ ︸
empirical risk, data fit

+ µΩ(f)︸ ︷︷ ︸
regularization

How do we define the functional space F?
Dexiong Chen PhD defense 9 / 41

String kernels

K (x, x′) =
∑

u∈Ak

δu(x)δu(x′) = 〈Φ(x),Φ(x′)〉,

where u is a k-mer over an alphabet A and δu(x) can be:
the number of occurrences of u in x ⇒ spectrum kernel [Leslie et al., 2002]
the number of occurrences of u in x up to m mismatches ⇒ mismatch
kernel [Leslie et al., 2004]
the number of occurrences of u in x allowing gaps, with a weight decaying
exponentially with the number of gaps ⇒ substring kernel [Lodhi et al., 2002]

The feature map Φ(x) can be interpreted as a histogram of subsequence
occurrences.

Dexiong Chen PhD defense 10 / 41

Convolutional kernel networks for sequences

We consider a continuous relaxation of the mismatch kernel

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0(x[i :i+k]︸ ︷︷ ︸
one k-mer

, x′[j :j+k]).

We use one-hot encoding to represent k-mers:

x[i :i+5] := TTGAG 7→
A
T
C
G

0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1

K0 is a Gaussian kernel over one-hot representations of k-mers (in Rk×d).

[Chen et al., 2019a, Morrow et al., 2017]
Dexiong Chen PhD defense 11 / 41

Convolutional kernel networks for sequences

We consider a continuous relaxation of the mismatch kernel

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

〈ϕ0(x[i :i+k]︸ ︷︷ ︸
one k-mer

), ϕ0(x′[j :j+k]))〉.

We use one-hot encoding to represent k-mers:

x[i :i+5] := TTGAG 7→
A
T
C
G

0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1

K0 is a Gaussian kernel over one-hot representations of k-mers (in Rk×d).

[Chen et al., 2019a, Morrow et al., 2017]
Dexiong Chen PhD defense 11 / 41

Convolutional kernel networks for sequences

We consider a continuous relaxation of the mismatch kernel

KCKN(x, x′) =

〈|x|−k+1∑

i=1

ϕ0(x[i :i+k])

︸ ︷︷ ︸
Φ(x)

,

|x′|−k+1∑

j=1

ϕ0(x′[j :j+k])

︸ ︷︷ ︸
Φ(x′)

〉
.

We use one-hot encoding to represent k-mers:

x[i :i+5] := TTGAG 7→
A
T
C
G

0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1

K0 is a Gaussian kernel over one-hot representations of k-mers (in Rk×d).

[Chen et al., 2019a, Morrow et al., 2017]
Dexiong Chen PhD defense 11 / 41

Nyström approximation of kernel mapping

K0(x , x ′) =
〈
ϕ0(x), ϕ0(x ′)

〉
H0

≈ 〈Πϕ0(x),Πϕ0(x ′)〉H0 =
〈
ψ0(x), ψ0(x ′)

〉
Rq .

Nyström provides a finite-dimensional approximation ψ0(x) ∈ Rq by
orthogonally projecting ϕ0(x) onto some finite-dimensional subspace:

E0 := span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}

ϕ0(z1)
ϕ0(z2)

Hilbert space H0

E0

ϕ0(x)

ϕ0(x′)

Πϕ0(x′)

〈Πϕ0(x),Πϕ0(x)〉H0
= 〈ψ0(x), ψ0(x′)〉Rq

Dexiong Chen PhD defense 12 / 41

Nyström approximation of kernel mapping

K0(x , x ′) =
〈
ϕ0(x), ϕ0(x ′)

〉
H0
≈ 〈Πϕ0(x),Πϕ0(x ′)〉H0

=
〈
ψ0(x), ψ0(x ′)

〉
Rq .

Nyström provides a finite-dimensional approximation ψ0(x) ∈ Rq by
orthogonally projecting ϕ0(x) onto some finite-dimensional subspace:

E0 := span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}

ϕ0(z1)
ϕ0(z2)

Hilbert space H0

E0

ϕ0(x)

Πϕ0(x)
ϕ0(x′)

Πϕ0(x′)

〈Πϕ0(x),Πϕ0(x)〉H0 = 〈ψ0(x), ψ0(x′)〉Rq

Dexiong Chen PhD defense 12 / 41

Nyström approximation of kernel mapping

K0(x , x ′) =
〈
ϕ0(x), ϕ0(x ′)

〉
H0
≈ 〈Πϕ0(x),Πϕ0(x ′)〉H0 =

〈
ψ0(x), ψ0(x ′)

〉
Rq .

Nyström provides a finite-dimensional approximation ψ0(x) ∈ Rq by
orthogonally projecting ϕ0(x) onto some finite-dimensional subspace:

E0 := span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}

ϕ0(z1)
ϕ0(z2)

Hilbert space H0

E0

ϕ0(x)

Πϕ0(x)
ϕ0(x′)

Πϕ0(x′)

〈Πϕ0(x),Πϕ0(x)〉H0 = 〈ψ0(x), ψ0(x′)〉Rq

Dexiong Chen PhD defense 12 / 41

Nyström approximation of kernel mapping

K0(x , x ′) =
〈
ϕ0(x), ϕ0(x ′)

〉
H0
≈ 〈Πϕ0(x),Πϕ0(x ′)〉H0 =

〈
ψ0(x), ψ0(x ′)

〉
Rq .

Nyström provides a finite-dimensional approximation ψ0(x) ∈ Rq by
orthogonally projecting ϕ0(x) onto some finite-dimensional subspace:

E0 := span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}

General case:
ψ0(x) = [K0(zi , zj)]

−1/2
ij [K0(z1, x), . . . ,K0(zq, x)]> = K0(Z ,Z)−1/2K0(Z , x)

[Williams and Seeger, 2001, Zhang et al., 2008]
Dexiong Chen PhD defense 12 / 41

Nyström approximation of kernel mapping

K0(x , x ′) =
〈
ϕ0(x), ϕ0(x ′)

〉
H0
≈ 〈Πϕ0(x),Πϕ0(x ′)〉H0 =

〈
ψ0(x), ψ0(x ′)

〉
Rq .

Nyström provides a finite-dimensional approximation ψ0(x) ∈ Rq by
orthogonally projecting ϕ0(x) onto some finite-dimensional subspace:

E0 := span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}

Case of dot-product kernels K0(x , x ′) = κ(〈x , x ′〉):

ψ0(x) = κ(Z>Z)−1/2κ(Z>x).

linear operation - pointwise non-linearity - linear operation.
κ(s) = eα(s−1) for the Gaussian kernel on unit sphere.

[Williams and Seeger, 2001, Zhang et al., 2008]
Dexiong Chen PhD defense 12 / 41

Single and multi-layer CKN for sequences

x ∈ X
xj ∈ Au = x[i:i+k] k-mer

ψ0(u) ∈ Rq

kernel mapping approximation

ψ0(u) = K
− 1

2

ZZKZ(u)

global pooling

Ψ(x) ∈ H y
prediction layer

〈w,Ψ(x)〉

u = x[i:i+k] k-mer

ψ0(u) ∈ Rq0

x1

pooling

x1
j ∈ Rq0

v = x1
[i:i+k]

ψ1(v) ∈ Rq1

Ψ(x) ∈ Rq

prediction layer

Dexiong Chen PhD defense 13 / 41

Single and multi-layer CKN for sequences

x ∈ X
xj ∈ Au = x[i:i+k] k-mer

ψ0(u) ∈ Rq

kernel mapping approximation

ψ0(u) = K
− 1

2

ZZKZ(u)

global pooling

Ψ(x) ∈ H y
prediction layer

〈w,Ψ(x)〉

u = x[i:i+k] k-mer

ψ0(u) ∈ Rq0

x1

pooling

x1
j ∈ Rq0

v = x1
[i:i+k]

ψ1(v) ∈ Rq1

Ψ(x) ∈ Rq

prediction layer

Dexiong Chen PhD defense 13 / 41

How do we learn the anchor points Z?

Without supervision:
we extract a large number (say 100 000) k-mers from the previous layer
computed on a sequence database;
perform a K-means algorithm to learn the anchor points as the centroids;
compute the projection matrix κ(Z>Z)−1/2.

With supervision:
using back-propagation on a supervised loss function with respect to Z ;
differentiating κ(Z>Z)−1/2 requires an eigendecomposition;
use the above unsupervised procedure as initialization.

Dexiong Chen PhD defense 14 / 41

How do we learn the anchor points Z?

Without supervision:
we extract a large number (say 100 000) k-mers from the previous layer
computed on a sequence database;
perform a K-means algorithm to learn the anchor points as the centroids;
compute the projection matrix κ(Z>Z)−1/2.

With supervision:
using back-propagation on a supervised loss function with respect to Z ;
differentiating κ(Z>Z)−1/2 requires an eigendecomposition;
use the above unsupervised procedure as initialization.

Dexiong Chen PhD defense 14 / 41

Visualization of anchor points for TF binding prediction

We use the representations Ψ(x) obtained with a single-layer CKN

min
w∈Rq ,Z∈Rqkd

n∑

i=1

L(w>Ψ(xi), yi) + µ‖w‖2,

where y is a binary label which equals to 1 if x binds to the TF of interest.
FOXA_disc1

CKN

0

1

2

b
it
s

1

T
2

A
G

3

T

4

G
T

5

G
T

6

G
A

7

C

8

C
A
T

9

C
T

1
0

T
A

0

1

2

b
it
s

1 2 3

T
4

A
G

5

T
6

T
7

G
T

8

G
A

9

C

1
0

A
T
C

1
1

C
T

1
2

A
T

CNN

0

1

2

b
it
s

T

3 4 5

G

C

A

T

6

T

C

A
G

7

G

C

A
T

8

A

C

G
T

9

C

A

G
T

1
0

C

T

G
A

1
1

G

A

T

C
1
2

C

A

T

GATA_disc1

CKN

0

1

2

b
it
s

1

A

G

2

A

G
C

3

C
T
A

4

G

5

A

6

T

7

T
A

8

C

A

9

C

G

1
0

A
C
G

0

1

2

b
it
s

1

C
G
A

2

C
G

3

C
T
A

4

G

5

A

6

T

7

A

8

A

9

G

1
0

C
A
G

1
1

1
2

A

C
T

CNN

0

1

2

b
it
s

1

A

C

T

G

2

C

T

G
A

3

C

G

A
T

4

G

C

T
A

5

T

G

C

A

6

T

A

C
G

7

C

A
G

8

T

A

9

T

Limitation: unable to capture gapped motifs (e.g. useful to model genetic insertions.)

Dexiong Chen PhD defense 15 / 41

Visualization of anchor points for TF binding prediction

We use the representations Ψ(x) obtained with a single-layer CKN

min
w∈Rq ,Z∈Rqkd

n∑

i=1

L(w>Ψ(xi), yi) + µ‖w‖2,

where y is a binary label which equals to 1 if x binds to the TF of interest.
FOXA_disc1

CKN

0

1

2

b
it
s

1

T
2

A
G

3

T

4

G
T

5

G
T

6

G
A

7

C

8

C
A
T

9

C
T

1
0

T
A

0

1

2

b
it
s

1 2 3

T
4

A
G

5

T
6

T
7

G
T

8

G
A

9

C

1
0

A
T
C

1
1

C
T

1
2

A
T

CNN

0

1

2

b
it
s

T

3 4 5

G

C

A

T

6

T

C

A
G

7

G

C

A
T

8

A

C

G
T

9

C

A

G
T

1
0

C

T

G
A

1
1

G

A

T

C
1
2

C

A

T

GATA_disc1

CKN

0

1

2

b
it
s

1

A

G

2

A

G
C

3

C
T
A

4

G

5

A

6

T

7

T
A

8

C

A

9

C

G

1
0

A
C
G

0

1

2

b
it
s

1

C
G
A

2

C
G

3

C
T
A

4

G

5

A

6

T

7

A

8

A

9

G

1
0

C
A
G

1
1

1
2

A

C
T

CNN

0

1

2

b
it
s

1

A

C

T

G

2

C

T

G
A

3

C

G

A
T

4

G

C

T
A

5

T

G

C

A

6

T

A

C
G

7

C

A
G

8

T

A

9

T

Limitation: unable to capture gapped motifs (e.g. useful to model genetic insertions.)
Dexiong Chen PhD defense 15 / 41

From k-mers to k-substring

k-mers with gaps
For a sequence x = x1 . . . xn ∈ X of length n, for a sequence of ordered indices
i = (i1, . . . , ik) ∈ I(k, n), we define a k-substring as:

x[i] = xi1xi2 . . . xik .

The length of the gaps in the substring is

gaps(i) = number of gaps in the indices.

Example: x = BAARACADACRB

i = (4, 5, 8, 9, 11) x[i] = RADAR gaps(i) = 3

Dexiong Chen PhD defense 16 / 41

Recurrent kernel networks

Comparing all the k-mers between a pair of sequences

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0

(
x[i :i+k], x′[j :j+k]

)
.

The kernel mapping is Φ(x) =
∑|x|−k+1

i=1 ϕ0(x[i :i+k])

The kernel mapping is Φ(x) =
∑

i∈I(k,|x|) λ
gaps(i)ϕ0(x[i]).

This is a differentiable relaxation of the substring kernel.
λ ∈ [0; 1] is a hyperparameter that penalizes the gaps in k-substrings.

[Lodhi et al., 2002, Lei et al., 2017]
Dexiong Chen PhD defense 17 / 41

Recurrent kernel networks

Comparing all the k-substrings between a pair of sequences

KRKN(x, x′) =
∑

i∈I(k,|x|)

∑

j∈I(k,|x′|)

λgaps(i)λgaps(j)K0

(
x[i], x′[j]

)
.

The kernel mapping is Φ(x) =
∑

i∈I(k,|x|) λ
gaps(i)ϕ0(x[i]).

This is a differentiable relaxation of the substring kernel.
λ ∈ [0; 1] is a hyperparameter that penalizes the gaps in k-substrings.

[Lodhi et al., 2002, Lei et al., 2017]
Dexiong Chen PhD defense 17 / 41

Approximation and recursive computation of RKN

Approximate feature map of RKN kernel The approximate feature map of KRKN via
Nyström approximation is

Ψ(x) =
∑

i∈I(k,|x|)

λgaps(i)ψ0(x[i]),

where, as usual with a dot-product kernel, ψ0(x[i]) = κ(Z>Z)−1/2κ(Z>x[i]).
Exhaustive enumeration of all substrings can be exponentially costly.

The sum can be computed using dynamic programming [Lodhi et al., 2002],
which leads to a particular recurrent neural network [Lei et al., 2017].

Dexiong Chen PhD defense 18 / 41

Approximation and recursive computation of RKN

Approximate feature map of RKN kernel The approximate feature map of KRKN via
Nyström approximation is

Ψ(x) =
∑

i∈I(k,|x|)

λgaps(i)ψ0(x[i]),

where, as usual with a dot-product kernel, ψ0(x[i]) = κ(Z>Z)−1/2κ(Z>x[i]).
Exhaustive enumeration of all substrings can be exponentially costly.
The sum can be computed using dynamic programming [Lodhi et al., 2002],
which leads to a particular recurrent neural network [Lei et al., 2017].

Dexiong Chen PhD defense 18 / 41

The feature map of RKN

When K0 is a Gaussian kernel, the feature map of RKN is a mixture of Gaussians
centered at x[i], weighted by the corresponding penalization λgaps(i).

k-substring kernel embedding

a 4-substring of x

i1 i2 λ i3 λ i4

xi

i1 i2 i3 i4

λ2ϕ0(x[i])

one-layer RKN

x

i1 i2 λ i3 λ ik

all embedded
k-substrings

λgap(i)ϕ0(x[i])

pooling

∑
i λ

gap(i)ϕ0(x[i])

Figure: Example of KRKN for k = 4

Dexiong Chen PhD defense 19 / 41

Transcription factor binding prediction

CNN CKN-seq unsup CKN-seq
Method

0.70

0.75

0.80

0.85

0.90

0.95

1.00

au
RO

C

2.1e-11

(a) ENCODE

CNN CNN+ CKN-seq CKN-seq+ CKN-seq++ uCKN-seq uCKN-seq+
Method

0.70

0.75

0.80

0.85

0.90

0.95

1.00

au
RO

C

1.3e-02 1.1e-06 1.1e-02 9.3e-04

(b) only 500 subsamples from ENCODE

Increasing]layers does not improve performance for short sequences (∼101bp).
CKNs outperform CNNs especially when few training examples are available.
In this case, non-supervision and data augmentation can improve performance.

Dexiong Chen PhD defense 20 / 41

Protein fold classification

Protein fold classification on SCOP 2.06 [Hou et al., 2018] (sequence features include
one-hot encoding, PSSM, secondary structure and solvent accessibility)
A dataset with few labels: 19,245 sequences from 1,195 different classes of fold.

Method]Params Accuracy Level-stratified accuracy (top1/top5)
top 1 top 5 family superfamily fold

PSI-BLAST - 84.53 86.48 82.20/84.50 86.90/88.40 18.90/35.100
DeepSF (CNN) 920k 73.00 90.25 75.87/91.77 72.23/90.08 51.35/67.57
CKN (128 filters) 211k 76.30 92.17 83.30/94.22 74.03/91.83 43.78/67.03
CKN (512 filters) 843k 84.11 94.29 90.24/95.77 82.33/94.20 45.41/69.19

RKN (128 filters) 211k 77.82 92.89 76.91/93.13 78.56/92.98 60.54/83.78
RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

Can we do even better?
Replacing the mean pooling with our optimal transport based adaptive pooling
(OTKE [Mialon*, Chen*, d’Aspremont and Mairal 2020]): 85.29 → 91.24

[Hou et al., 2018, Chen et al., 2019a,b]
Dexiong Chen PhD defense 21 / 41

Protein fold classification

Protein fold classification on SCOP 2.06 [Hou et al., 2018] (sequence features include
one-hot encoding, PSSM, secondary structure and solvent accessibility)
A dataset with few labels: 19,245 sequences from 1,195 different classes of fold.

Method]Params Accuracy Level-stratified accuracy (top1/top5)
top 1 top 5 family superfamily fold

PSI-BLAST - 84.53 86.48 82.20/84.50 86.90/88.40 18.90/35.100
DeepSF (CNN) 920k 73.00 90.25 75.87/91.77 72.23/90.08 51.35/67.57
CKN (128 filters) 211k 76.30 92.17 83.30/94.22 74.03/91.83 43.78/67.03
CKN (512 filters) 843k 84.11 94.29 90.24/95.77 82.33/94.20 45.41/69.19

RKN (128 filters) 211k 77.82 92.89 76.91/93.13 78.56/92.98 60.54/83.78
RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

Can we do even better?
Replacing the mean pooling with our optimal transport based adaptive pooling
(OTKE [Mialon*, Chen*, d’Aspremont and Mairal 2020]): 85.29 → 91.24

[Hou et al., 2018, Chen et al., 2019a,b]

Dexiong Chen PhD defense 21 / 41

Basic idea: a trainable optimal transport embedding

x1

x2xn

z1

zp

P11

P2p
Pn1

'(x1) '(x2) . . . '(xn)

�z(x)1 . . . �z(x)p

P11 Pn1 P2p

View sequence as a set of k-mer features ϕ(xi) extracted by CKN before pooling.
Compare a pair of sequences based on an optimal transport between two sets:

K (x, x′) = min
P∈U(x,x′)

∑

ij

−Pijκ(xi , x′j)− εH(P), (1)

U(x, x′) = {P ∈ Rn×n′
+ : P1n = 1/n and P>1n′ = 1/n′}.

G. Mialon*, D. Chen* et al. A trainable optimal transport embedding for feature aggregation. arXiv 2020

Dexiong Chen PhD defense 22 / 41

Basic idea: a trainable optimal transport embedding

x1

x2xn

z1

zp

P11

P2p
Pn1

'(x1) '(x2) . . . '(xn)

�z(x)1 . . . �z(x)p

P11 Pn1 P2p

Let P(x, z) ∈ Rn×p be the solution of the OT problem 1 between z and x, and

Φz(x) :=
√
p×

(
n∑

i=1

P(x, z)i1ϕ(xi), . . . ,
n∑

i=1

P(x, z)ipϕ(xi)

)
=
√
p×P(x, z)>ϕ(x)

A valid kernel can be defined as K (x, x′) =
∑p

i=1〈Φz(x)i ,Φz(x′)i 〉.
Parameter z can be learned in both unsupervised and supervised ways.

G. Mialon*, D. Chen* et al. A trainable optimal transport embedding for feature aggregation. arXiv 2020

Dexiong Chen PhD defense 22 / 41

Graph Modeling
D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-structured data.
In International Conference on Machine Learning (ICML), 2020

Dexiong Chen PhD defense 23 / 41

Graph-structured data are ubiquitous

(c) molecules (d) protein regulation

(e) social networks (f) chemical pathways

Dexiong Chen PhD defense 24 / 41

Learning graph representations

State-of-the-art models for representing graphs
Deep learning for graphs: graph neural networks (GNNs)
Graph kernels: Weisfeiler-Lehman (WL) graph kernels
Hybrid models attempt to bridge both worlds: graph neural tangent kernels

Our model:
A new type of multilayer graph kernel: more expressive than WL kernels
Learning easy-to-regularize and scalable unsupervised graph representations
Learning supervised graph representations like GNNs

Dexiong Chen PhD defense 25 / 41

Learning graph representations

State-of-the-art models for representing graphs
Deep learning for graphs: graph neural networks (GNNs)
Graph kernels: Weisfeiler-Lehman (WL) graph kernels
Hybrid models attempt to bridge both worlds: graph neural tangent kernels

Our model:
A new type of multilayer graph kernel: more expressive than WL kernels
Learning easy-to-regularize and scalable unsupervised graph representations
Learning supervised graph representations like GNNs

Dexiong Chen PhD defense 25 / 41

Graphs with node attributes

u

G = (V, E , a : V → R3)

a(u) = [0.3, 0.8, 0.5]

A graph is defined as a triplet (V, E , a);
V and E correspond to the set of vertices and edges;
a : V → Rd is a function assigning attributes to each node.

Dexiong Chen PhD defense 26 / 41

Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G) in H, which lends itself to learning tasks.

A large class of graph kernel mappings can be written in the form

ϕ(G) :=
∑

u∈V
ϕbase(`G (u)) where ϕbase embeds some local patterns `G (u) to H.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
Dexiong Chen PhD defense 27 / 41

Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G) in H, which lends itself to learning tasks.
A large class of graph kernel mappings can be written in the form

ϕ(G) :=
∑

u∈V
ϕbase(`G (u)) where ϕbase embeds some local patterns `G (u) to H.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
Dexiong Chen PhD defense 27 / 41

Basic kernels: walk and path kernel mappings
Walks 6= paths

433 / 666

Walks 6= paths

433 / 666

Pk(G , u) := paths of length k from node u in G . The k-path mapping is

ϕpath(u) :=
∑

p∈Pk (G ,u)

δa(p) ⇒ Φpath(G) =
∑

u∈G

∑

p∈Pk (G ,u)

δa(p)

a(p): concatenated attributes in p; δ: the Dirac function.
Φpath(G) can be interpreted as a histogram of paths occurrences.

Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.

Dexiong Chen PhD defense 28 / 41

Basic kernels: walk and path kernel mappings
Walks 6= paths

433 / 666

Walks 6= paths

433 / 666

Pk(G , u) := paths of length k from node u in G . The k-path mapping is

ϕpath(u) :=
∑

p∈Pk (G ,u)

δa(p) ⇒ Φpath(G) =
∑

u∈G

∑

p∈Pk (G ,u)

δa(p)

a(p): concatenated attributes in p; δ: the Dirac function.
Φpath(G) can be interpreted as a histogram of paths occurrences.
Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.

Dexiong Chen PhD defense 28 / 41

A relaxed path kernel

Walks 6= paths

433 / 666

ϕpath(u) =
∑

p∈Pk (G ,u)

δa(p)(·)

=⇒
∑

p∈Pk (G ,u)

e−
α
2 ‖a(p)−·‖2 .

Issues of the path kernel mapping:
δ allows hard comparison between paths thus only works for discrete attributes.
δ is not differentiable, which cannot be “optimized” with back-propagation.

Relax it with a “soft” and differentiable mapping
interpreted as the sum of Gaussians centered at each path features from u.

Dexiong Chen PhD defense 29 / 41

A relaxed path kernel

Walks 6= paths

433 / 666

ϕpath(u) =
∑

p∈Pk (G ,u)

δa(p)(·)

=⇒
∑

p∈Pk (G ,u)

e−
α
2 ‖a(p)−·‖2 .

Issues of the path kernel mapping:
δ allows hard comparison between paths thus only works for discrete attributes.
δ is not differentiable, which cannot be “optimized” with back-propagation.

Relax it with a “soft” and differentiable mapping
interpreted as the sum of Gaussians centered at each path features from u.

Dexiong Chen PhD defense 29 / 41

One-layer GCKN: a closer look on the relaxed path kernel

We define the one-layer GCKN as the relaxed path kernel mapping

ϕ1(u) :=
∑

p∈Pk (G ,u)

e−
α1
2 ‖a(p)−·‖2 =

∑

p∈Pk (G ,u)

ϕRBF(a(p)) ∈ H1.

This formula can be divided into 3 steps:
path extraction: enumerating all Pk(G , u)
kernel mapping: evaluating Gaussian embedding ϕRBF of path features
path aggregation: aggregating the path embeddings

We obtain a new graph with the same topology but different features

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

Dexiong Chen PhD defense 30 / 41

One-layer GCKN: a closer look on the relaxed path kernel

We define the one-layer GCKN as the relaxed path kernel mapping

ϕ1(u) :=
∑

p∈Pk (G ,u)

e−
α1
2 ‖a(p)−·‖2 =

∑

p∈Pk (G ,u)

ϕRBF(a(p)) ∈ H1.

This formula can be divided into 3 steps:
path extraction: enumerating all Pk(G , u)
kernel mapping: evaluating Gaussian embedding ϕRBF of path features
path aggregation: aggregating the path embeddings

We obtain a new graph with the same topology but different features

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

Dexiong Chen PhD defense 30 / 41

Construction of one-layer GCKN

u

a(u) ∈ Rd

(V , E , a : V → Rd)

path extraction

kernel mapping

path aggregation

u

u

ϕ1(u) ∈ H1

u u u

p1 p2 p3

ϕRBF(a(p1))
ϕRBF(a(p2))

ϕRBF(a(p3))

kernel mapping

H1

path aggregation

ϕ1(u) := ϕRBF(a(p1)) + ϕRBF(a(p2)) + ϕRBF(a(p3))

(V , E , ϕ1 : V → H1)

Dexiong Chen PhD defense 31 / 41

From one-layer to multilayer GCKN

We can repeat applying ϕpath to the new graph

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

ϕpath−−−→ (V, E , ϕ2)
ϕpath−−−→ . . .

ϕpath−−−→ (V, E , ϕj).

ϕj(u) represents the information about a neighborhood of u.
Final graph representation at layer j , Φj(G) =

∑
u∈V ϕj(u).

Why is the multilayer model interesting ?
applying ϕpath once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
so applying even more times may capture higher-order structures ?
Long paths cannot be enumerated due to computational complexity, yet multilayer
model can capture long-range substructures.

Dexiong Chen PhD defense 32 / 41

From one-layer to multilayer GCKN

We can repeat applying ϕpath to the new graph

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

ϕpath−−−→ (V, E , ϕ2)
ϕpath−−−→ . . .

ϕpath−−−→ (V, E , ϕj).

ϕj(u) represents the information about a neighborhood of u.
Final graph representation at layer j , Φj(G) =

∑
u∈V ϕj(u).

Why is the multilayer model interesting ?
applying ϕpath once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
so applying even more times may capture higher-order structures ?
Long paths cannot be enumerated due to computational complexity, yet multilayer
model can capture long-range substructures.

Dexiong Chen PhD defense 32 / 41

Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk (G ,u)

ϕRBF(a(p))

ϕRBF(x) = e−
α
2 ‖x−·‖

2 ∈ H is infinite-dimensional (expensive to compute).

Nyström provides a finite-dimensional approximation ψ(x) ∈ Rq by orthogonally
projecting ϕRBF(x) onto some finite-dimensional subspace:

span(ϕRBF(z1), . . . , ϕRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.
The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b]
Dexiong Chen PhD defense 33 / 41

Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk (G ,u)

ϕRBF(a(p))

ϕRBF(x) = e−
α
2 ‖x−·‖

2 ∈ H is infinite-dimensional (expensive to compute).
Nyström provides a finite-dimensional approximation ψ(x) ∈ Rq by orthogonally
projecting ϕRBF(x) onto some finite-dimensional subspace:

span(ϕRBF(z1), . . . , ϕRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.

The parameters Z can be learned by
(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b]
Dexiong Chen PhD defense 33 / 41

Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk (G ,u)

ϕRBF(a(p))

ϕRBF(x) = e−
α
2 ‖x−·‖

2 ∈ H is infinite-dimensional (expensive to compute).
Nyström provides a finite-dimensional approximation ψ(x) ∈ Rq by orthogonally
projecting ϕRBF(x) onto some finite-dimensional subspace:

span(ϕRBF(z1), . . . , ϕRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.
The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b]
Dexiong Chen PhD defense 33 / 41

Comparison of GCKN and GNN

GCKN vs. GNN
ΨGCKN(G) =

∑

u∈G
ψj(u) ΨGNN(G) =

∑

u∈G
fj(u)

ψj(u) =
∑

p∈Pk (G ,u)

κ(Z>Z)−
1
2κ(Z>ψj−1(p)) fj(u) =

∑

v∈N (u)

ReLU(Z>fj−1(v))

local path aggregation neighborhood aggregation
projection in a known RKHS unknown functional space

both supervised and unsupervised only supervised

If G is a (directed) path graph, GCKN becomes a CKN while GNN will not recover a
CNN for k > 1.

Dexiong Chen PhD defense 34 / 41

Experiments on graphs with discrete attributes
MUTAG

PROTEINS

PTC

NCI1IMDB-B

IMDB-M

COLLAB

-10

0

10
12

WL subtree
GNTK
GCN
GIN
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WL subtree
kernel.
GCKN-path already
outperforms the baselines.
Increasing number of layers
brings larger improvement.
Supervised learning does not
improve performance, but
leads to more compact
representations.

[Shervashidze et al., 2011, Du et al., 2019, Xu et al., 2019, Kipf and Welling, 2017]
Dexiong Chen PhD defense 35 / 41

Experiments on graphs with continuous attributes
ENZYMES

PROTEINS

BZR

COX2 -5

0

5

WWL
GNTK
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WWL kernel.
Results similar to discrete
case.
Path features seem
presumably predictive enough.

[Du et al., 2019, Togninalli et al., 2019]
Dexiong Chen PhD defense 36 / 41

Model interpretation for mutagenicity prediction

Idea: find the minimal connected component that preserves the prediction.

GCKN

Original

[Ying et al., 2019]
Dexiong Chen PhD defense 37 / 41

Conclusion and Future Research

Dexiong Chen PhD defense 38 / 41

Conclusion

Convolutional and recurrent kernel networks for biological sequences

Multilayer kernels for biological sequences.

Achieve SOTA in TF binding prediction and protein fold classification.

RKN is able to model gaps with a RNN structure, useful for remote homology detection.

Best results were obtained with one-layer models for short sequences.

Non-supervision and data augmentation can improve performance when labels are scarce.

Dexiong Chen PhD defense 39 / 41

Conclusion

Convolutional kernel networks for graphs

A multilayer kernel for graphs based on paths.

Allows to control the trade-off between computation and expressiveness.

A straightforward model interpretation is provided.

Long path features could be useful for toxicology prediction.

Ongoing collaboration on protein model quality assessment.

Dexiong Chen PhD defense 39 / 41

Conclusion

Supervised vs. unsupervised representations

Without supervision, models provide effective but high-dimensional embeddings.

With supervision, models trained with backpropagation are much more compact.

Feature aggregation

Max pooling generally outperforms mean pooling in practice but less stable.

Max pooling can be simulated in RKHSs.

An optimal transport based adaptive pooling performs even better.

Dexiong Chen PhD defense 39 / 41

Future research and perspectives

Efficient learning pipelines to deal with genome-scale data
Training CKNs or CNNs directly on genome-scale data can be costly and inefficient.
Localize large relevant regions with selection methods?
Then perform refined learning on selected regions.

Dexiong Chen PhD defense 40 / 41

Future research and perspectives

More compact and accurate unsupervised representations
Nyström approximation is not efficient for higher layers.
Better approximation methods for deep kernels [Shankar et al., 2020]?
Self-supervised learning to learn more compact representations [Caron et al., 2018,
Rives et al., 2019]?

Dexiong Chen PhD defense 40 / 41

Future research and perspectives

Performance gap between kernel methods and ResNets
ResNets perform “hierarchical learning” while kernels cannot [Allen-Zhu and Li,
2019].
Deep kernels can perform as well as convolutional networks but worse than
ResNets on CIFAR-10 [Shankar et al., 2020].
Multiple kernel learning can select kernels defined on different layers.

Dexiong Chen PhD defense 40 / 41

Future research and perspectives

Better feature aggregation for structured data
Optimal transport for better feature aggregation, theoretical guarantee?
Other inductive bias from kernel literature (e.g. Fisher kernels)?

Dexiong Chen PhD defense 40 / 41

Thank you!

Dexiong Chen PhD defense 41 / 41

References I

B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities of dna-and
rna-binding proteins by deep learning. Nature biotechnology, 33(8):831–838, 2015.

Z. Allen-Zhu and Y. Li. What can resnet learn efficiently, going beyond kernels? In Advances in Neural
Information Processing Systems (NeurIPS), pages 9017–9028, 2019.

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural networks. In
International Conference on Machine Learning (ICML), 2019.

M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel networks.
Bioinformatics, 35(18):3294–3302, 2019a.

D. Chen, L. Jacob, and J. Mairal. Recurrent kernel networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2019b.

D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-structured data. In International
Conference on Machine Learning (ICML), 2020.

S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang, and K. Xu. Graph neural tangent kernel: Fusing
graph neural networks with graph kernels. In Advances in Neural Information Processing Systems (Neurips),
2019.

Dexiong Chen PhD defense 42 / 41

References II

S. Hochreiter, M. Heusel, and K. Obermayer. Fast model-based protein homology detection without alignment.
Bioinformatics, 23(14):1728–1736, 2007.

J. Hou, B. Adhikari, and J. Cheng. Deepsf: deep convolutional neural network for mapping protein sequences to
folds. Bioinformatics, 34(8):1295–1303, 2018.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

N. M. Kriege, M. Neumann, C. Morris, K. Kersting, and P. Mutzel. A unifying view of explicit and implicit
feature maps of graph kernels. Data Mining and Knowledge Discovery, 33(6):1505–1547, 2019.

T. Lei, W. Jin, R. Barzilay, and T. Jaakkola. Deriving neural architectures from sequence and graph kernels. In
International Conference on Machine Learning (ICML), 2017.

C. Leslie, E. Eskin, J. Weston, and W. Noble. Mismatch String Kernels for SVM Protein Classification. In
Advances in Neural Information Processing Systems (NIPS). MIT Press, 2003.

C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for svm protein classification. In
Pacific Symposium on Biocomputing, volume 7, pages 566–575. Hawaii, USA, 2002.

C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble. Mismatch string kernels for discriminative protein
classification. Bioinformatics, 20(4):467–476, 2004.

L. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector machines for detecting
remote protein evolutionary and structural relationships. Journal of computational biology, 10(6):857–868,
2003.

Dexiong Chen PhD defense 43 / 41

References III

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels.
Journal of Machine Learning Research (JMLR), 2(Feb):419–444, 2002.

J. Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In Advances in Neural
Information Processing Systems (NIPS), 2016.

G. Mialon*, D. Chen*, A. d’Aspremont, and J. Mairal. A trainable optimal transport embedding for feature
aggregation. arXiv preprint arXiv:2006.12065, 2020.

A. Morrow, V. Shankar, D. Petersohn, A. Joseph, B. Recht, and N. Yosef. Convolutional kitchen sinks for
transcription factor binding site prediction. arXiv preprint arXiv:1706.00125, 2017.

A. Rives, S. Goyal, J. Meier, D. Guo, M. Ott, C. L. Zitnick, J. Ma, and R. Fergus. Biological structure and
function emerge from scaling unsupervised learning to 250 million protein sequences. bioRxiv, 2019.

V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht. Neural kernels
without tangents. In International Conference on Machine Learning (ICML), 2020.

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research (JMLR), 12(9), 2011.

M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt. Wasserstein weisfeiler-lehman graph
kernels. In Advances in Neural Information Processing Systems (Neurips), 2019.

J.-P. Vert, H. Saigo, and T. Akutsu. Convolution and local alignment kernels. Kernel methods in computational
biology, pages 131–154, 2004.

Dexiong Chen PhD defense 44 / 41

References IV

C. K. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In Advances in neural
information processing systems (NIPS), 2001.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International
Conference on Learning Representations (ICLR), 2019.

Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations for graph
neural networks. In Advances in neural information processing systems (Neurips), 2019.

K. Zhang, I. W. Tsang, and J. T. Kwok. Improved nyström low-rank approximation and error analysis. In
International Conference on Machine Learning (ICML), 2008.

Dexiong Chen PhD defense 45 / 41

Visualization of anchor points in CKN

For a one-layer, find the preimage of filter i by optimizing

min
u∈M

‖ϕ0(u)− ϕ0(zi)‖2H0
,

whereM⊆ Rk×4 is an appropriate simplex of motifs.
Projection onto the simplex induces sparsity thus more informative motif.

ϕ0(z1)

ϕ0(z2)

Hilbert space H0

E0

ϕ0(z)

Πϕ0(z)

ϕ0(z′)

Πϕ0(z′)

A

C

G

T

motif associated with ϕ0(z1)

0.2

0.4

0.4

0

0.2

0.1

0.7

0

0.5

0.1

0.2

0.2

0

0

0.3

0.7

0.1

0.1

0.2

0.6

0

0.6

0.4

0preimage

Dexiong Chen PhD defense 46 / 41

Computation of recurrent kernel networks

The approximate feature map of KRKN via Nyström approximation is

ψj(x1:t) =
∑

i∈I(j ,t)

λgaps(i)ψ0(x1:t [i]) = K
−1/2
ZjZj

∑

i∈I(j ,t)

λgaps(i)KZj
(x[i]) := K

−1/2
ZjZj

hj [t],

for any j ∈ {1, . . . , k} and t ∈ {1, . . . , |x|}. Zj is a matrix in Rd×q whose i-th column
is the j-th vector of zi .
We can prove that hj [t] in Rq obeying some recursion similar to the one used in
substring kernel

cj [1] = hj [1] = 0 1 ≤ j ≤ k ,

c0[t] = 1 1 ≤ t ≤ |x|,
cj [t] = λcj [t − 1] + cj−1[t − 1]� κ(Z>j xt) 1 ≤ j ≤ k ,

hj [t] = hj [t − 1] + cj−1[t − 1]� κ(Z>j xt) 1 ≤ j ≤ k ,

where κ is a non-linear function κ(x) = eα(x−1).
Dexiong Chen PhD defense 47 / 41

Multilayer construction of RKNs

x ∈ X

first layer kernel

K(1)
k

x(1) ∈ H|x|
1

Φ
(1)
k

(x1) = 0 Φ
(1)
k

(x1:4) Φ
(1)
k

(x1:t) ∈ H1 Φ
(1)
k

(x)

x(n) ∈ H|x|
n

Φ
(n)
k

(
x
(n−1)
1:t

)
Φ
(n)
k

(
x(n−1)

)

prediction
layer

y

Dexiong Chen PhD defense 48 / 41

Results on SCOP 1.67

Protein fold recognition on SCOP 1.67 (widely used benchmark)

Method pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

SVM-pairwise 0.724 0.359
Mismatch 0.814 0.467
LA-kernel – – 0.834 0.504
LSTM 0.830 0.566 – –
CKN 0.837 0.572 0.866 0.621

RKN mean 0.829 0.541 0.840 0.571
RKN max 0.844 0.587 0.871 0.629
RKN (unsup) mean 0.805 0.504 0.833 0.570

[Liao and Noble, 2003, Leslie et al., 2003, Vert et al., 2004, Hochreiter et al., 2007, Chen et al., 2019a]
Dexiong Chen PhD defense 49 / 41

Walks vs paths

Figure: An example about connectivity where ϕwalk(G) = ϕwalk(G ′) but ϕpath(G) 6= ϕpath(G ′)

Tottering walks seem irrelevant for many applications.
Path kernels are generally more expressive than walk kernels.
Most existing methods rely on walks for computational reason.

Dexiong Chen PhD defense 50 / 41

Weisfeiler-Lehman subtree kernel

SHERVASHIDZE, SCHWEITZER, VAN LEEUWEN, MEHLHORN AND BORGWARDT

1

2

3

4

5

6

1

1 3 1 51 2 4 5

2 63

Figure 1: A subtree pattern of height 2 rooted at the node 1. Note the repetitions of nodes in the
unfolded subtree pattern on the right.

computer vision application, Harchaoui and Bach (2007) have proposed a dynamic programming-
based approach to speed up the computation of the randomwalk kernel, but at the cost of considering
walks of fixed size. Suard et al. (2005) and Vert et al. (2009) present other applications of random
walk kernels in computer vision. Mahé et al. (2004) have proposed extensions of marginalized
graph kernels (Kashima et al., 2003) for a chemoinformatics application: here the authors relabel
vertices of graphs using the Morgan index (Morgan, 1965), which increases the specificity of labels
by augmenting them with information on the number of walks starting at a node, and thereby also
helps reduce the runtime, as fewer vertices will match. The shortest path kernel by Borgwardt and
Kriegel (2005) counts pairs of shortest paths having the same source and sink labels and the same
length in two graphs. The runtime of this kernel scales as O(n4).

The second class, graph kernels based on limited-size subgraphs, includes kernels based on so-
called graphlets, which represent graphs as counts of all types of subgraphs of size k ∈ {3,4,5}.
There exist efficient computation schemes for these kernels based on sampling or exploitation of
the low maximum degree of graphs (Shervashidze et al., 2009), but these apply to unlabeled graphs
only. Cyclic pattern kernels (Horváth et al., 2004) count pairs of matching cyclic patterns in two
graphs. Computing this kernel for a general graph is unfortunately NP-hard, however there exist
special cases where the kernel can be efficiently computed. The kernel, recently proposed by Costa
and De Grave (2010), can also be classified in this category: It counts identical pairs of rooted
subgraphs containing nodes up to a certain distance from the root, the roots of which are located at
a certain distance from each other, in two graphs.

The first kernel from the third class, subtree kernels, was defined by Ramon and Gärtner (2003).
Intuitively, to compare graphs G and G′, this kernel iteratively compares all matchings between
neighbours of two nodes v from G and v′ from G′. In other words, for all pairs of nodes v from
G and v′ from G′, it counts all pairs of matching substructures in subtree patterns rooted at v and
v′. The runtime complexity of the subtree kernel for a data set of N graphs is O(N2n2h 4d). For a
detailed description of this kernel see Section 3.2.2.

The subtree kernels by Mahé and Vert (2009) and Bach (2008) refine the Ramon-Gärtner kernel
for applications in chemoinformatics and hand-written digit recognition. BothMahé and Vert (2009)
and Bach (2008) propose to consider α-ary subtrees with at most α children per node. This restricts
the set of matchings to matchings of up to α nodes, but the runtime complexity is still exponential

2542

Enumerating subtree patterns can be exponentially costly. Is there a fast way ?
WL algorithm: iterative enumeration for graphs with discrete node labels.

We define a sequence of node labels initialized with a0 = a.
At iteration i ≥ 1, ai (u) = hash([ai−1(u), sort({ai−1(v) | v ∈ N (u)})]).

WL subtree kernel at depth k is defined as

κsubtree(u, u
′) = δ(ai (u), a′i (u

′))

[Shervashidze et al., 2011]
Dexiong Chen PhD defense 51 / 41

Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels κwalk and κsubtree ?

WL subtree kernel as a 2-layer walk kernel

LetM(u, u′) be the set of exact matchings of subsets of the neighborhoods of two
nodes u and u′. For any u ∈ G and u′ ∈ G ′ such that |M(u, u′)| = 1,

κsubtree(u, u
′) = δ(ϕwalk(u), ϕ′walk(u′)), (2)

where ϕwalk is the feature map of κwalk satisfying ϕwalk(u) =
∑

p∈Wk (G ,u) ϕδ(p) .

A sufficient condition for |M(u, u′)| = 1: u and u′ have same degrees and both
of them have distinct neighbors.
If we replace ϕpath instead of ϕwalk we capture subtrees without repeated nodes !

Dexiong Chen PhD defense 52 / 41

Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels κwalk and κsubtree ?

WL subtree kernel as a 2-layer walk kernel

LetM(u, u′) be the set of exact matchings of subsets of the neighborhoods of two
nodes u and u′. For any u ∈ G and u′ ∈ G ′ such that |M(u, u′)| = 1,

κsubtree(u, u
′) = δ(ϕwalk(u), ϕ′walk(u′)), (2)

where ϕwalk is the feature map of κwalk satisfying ϕwalk(u) =
∑

p∈Wk (G ,u) ϕδ(p) .

Can we go beyond subtrees to higher order patterns ?

Dexiong Chen PhD defense 52 / 41

Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels κwalk and κsubtree ?

WL subtree kernel as a 2-layer walk kernel

LetM(u, u′) be the set of exact matchings of subsets of the neighborhoods of two
nodes u and u′. For any u ∈ G and u′ ∈ G ′ such that |M(u, u′)| = 1,

κsubtree(u, u
′) = δ(ϕwalk(u), ϕ′walk(u′)), (2)

where ϕwalk is the feature map of κwalk satisfying ϕwalk(u) =
∑

p∈Wk (G ,u) ϕδ(p) .

Can we go beyond subtrees to higher order patterns ?
Composing path kernels !

Dexiong Chen PhD defense 52 / 41

Model interpretation of GCKN

By construction, ΨGCKN(G) only depends on G through its set of paths Pk(G)

min
P ′⊆Pk (G)

L(ŷ , 〈ΨGCKN(P ′),w〉) + µ|P ′|, (3)

This problem can be relaxed by introducing a mask M with values in [0; 1]

min
M∈[0;1]|Pk (G)|

L(ŷ , 〈Ψ1(Pk(G)�M),w〉) + µ‖M‖1, (4)

Dexiong Chen PhD defense 53 / 41

Results for GCKN on graphs with discrete node attributes

Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M COLLAB

size 188 1113 344 4110 1000 1500 5000
classes 2 2 2 2 2 3 3
avg]nodes 18 39 26 30 20 13 74
avg]edges 20 73 51 32 97 66 2458

LDP 88.9± 9.6 73.3± 5.7 63.8± 6.6 72.0± 2.0 68.5± 4.0 42.9± 3.7 76.1± 1.4

WL subtree 90.4± 5.7 75.0± 3.1 59.9± 4.3 86.0± 1.8 73.8± 3.9 50.9± 3.8 78.9± 1.9
AWL 87.9± 9.8 - - - 74.5± 5.9 51.5± 3.6 73.9± 1.9
RetGK 90.3± 1.1 75.8± 0.6 62.5± 1.6 84.5± 0.2 71.9± 1.0 47.7± 0.3 81.0± 0.3
GNTK 90.0± 8.5 75.6± 4.2 67.9± 6.9 84.2± 1.5 76.9± 3.6 52.8± 4.6 83.6± 1.0

GCN 85.6± 5.8 76.0± 3.2 64.2± 4.3 80.2± 2.0 74.0± 3.4 51.9± 3.8 79.0± 1.8
PatchySAN 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9 71.0± 2.2 45.2± 2.8 72.6± 2.2
GIN 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7 75.1± 5.1 52.3± 2.8 80.2± 1.9

GCKN-walk-unsup 92.8± 6.1 75.7± 4.0 65.9± 2.0 80.1± 1.8 75.9± 3.7 53.4± 4.7 81.7± 1.4
GCKN-path-unsup 92.8± 6.1 76.0± 3.4 67.3± 5.0 81.4± 1.6 75.9± 3.7 53.0± 3.1 82.3± 1.1
GCKN-subtree-unsup 95.0± 5.2 76.4± 3.9 70.8± 4.6 83.9± 1.6 77.8± 2.6 53.5± 4.1 83.2± 1.1
GCKN-3layer-unsup 97.2± 2.8 75.9± 3.2 69.4± 3.5 83.9± 1.2 77.2± 3.8 53.4± 3.6 83.4± 1.5

GCKN-subtree-sup 91.6± 6.7 76.2± 2.5 68.4± 7.4 82.0± 1.2 76.5± 5.7 53.3± 3.9 82.9± 1.6

Dexiong Chen PhD defense 54 / 41

Results for GCKN on graphs with continuous node attributes

Dataset ENZYMES PROTEINS BZR COX2

size 600 1113 405 467
classes 6 2 2 2
attr. dim. 18 29 3 3
avg]nodes 32.6 39.0 35.8 41.2
avg]edges 62.1 72.8 38.3 43.5

RBF-WL 68.4± 1.5 75.4± 0.3 81.0± 1.7 75.5± 1.5
HGK-WL 63.0± 0.7 75.9± 0.2 78.6± 0.6 78.1± 0.5
HGK-SP 66.4± 0.4 75.8± 0.2 76.4± 0.7 72.6± 1.2
WWL 73.3± 0.9 77.9± 0.8 84.4± 2.0 78.3± 0.5
GNTK 69.6± 0.9 75.7± 0.2 85.5± 0.8 79.6± 0.4

GCKN-walk-unsup 73.5± 0.5 76.5± 0.3 85.3± 0.5 80.6± 1.2
GCKN-path-unsup 75.7± 1.1 76.3± 0.5 85.9± 0.5 81.2± 0.8
GCKN-subtree-unsup 74.8± 0.7 77.5± 0.3 85.8± 0.9 81.8± 0.8
GCKN-3layer-unsup 74.6± 0.8 77.5± 0.4 84.7± 1.0 82.0± 0.6

GCKN-subtree-sup 72.8± 1.0 77.6± 0.4 86.4± 0.5 81.7± 0.7

Dexiong Chen PhD defense 55 / 41

